
7 -A166 935 PARTITIONING OF FUNCTION IN ADISTRIBUTED GRAPICS- V
SYSTEM(U) STANFORD UNIV CA DEPT OF COMPUTER SCIENCE

IF I N OMICKI MAR B5 STRN-CS-85-1082 MDA9-M-C-62
UNCLASSIFIED F/G 17/2NL

EhhEEEEEE



.Lo.

146I111W 228

IN-

M
w

w

" ~ ~llhI ''

Ils- 1.8~m

NATIONIAL OUA'AU OF STANOAPOS._ 96 S ,

S,;

'p.",

'U%
.4 6%



%larch 1985 Report No. STAN-C.S-85-108Z
Also numbered C VL-85-282

Partitioning of Function
to in a Distributed Graphics System
to

by

i "Wiiarn 1. Nowicki
4LTIC

APR2j-
ID

Department of Computer Science

Stanford University
.' %nford, CA 94305

08

- A
C'.."!, .£

: II,, L,

l , 1 -, -) -,,) ., L . .,. '-=j'i-W , " . , ''., J " " ',' ' ''I' ''",.,,', ,'," ",.._ .''



SECURITY CLASSIFICATION OF THIS PAGE ffUme D, ie e*)
DOCUMENTATION PAGE READ INSTRUCTIONS

REPORT BEFORE COMPLETING FORM
U. REPORT NUMBER 3. GOVT ACCESSION NO. 3. RECIPIENT*S CATALOG NUMBER

4. TITLE (md SubtlleJ S. TYPE OF REPORT A PRIOO COVERlEo

Partitioning of Function in a Distributed technical
Graphics System

6. PERFORMING ORG. REPORT NUMBER

STAN-CS-85-108?,
7. AUTHOR(s) 6. CONTRACT OR GRANT UMBER(s)

William I. Nowicki MDA903-80-C-0102
N00039-83-K-0431

S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK"
AREA & WORK UNIT NUMBERS

Departments of Computer Science and
Electrical Engineering

II. CONTROLLING OFFICE NAME AND ADORESS I2. REPORT DATE

Defense Advanced Research Project Agency March 1985
1400 Wilson Blvd. 13. NUMBER OF PAGES

Arlington, VA 22209 144
14. MONITORING AGENCY NAME 6 AOORESS(5I dHOsM" from C0011111#1 OU1icO) IS. SECURITY CLASS. (of this report)

unclassified

IS&. DECL ASSI IC ATION/DOWNGRADING
SCHEOULE

1. DISTRIBUTION STATEMENT (*I fll* Report)

Approved for public release: distribution unlimited

17. DISTRIBUTION STATEMENT (at the obewiaSt, 4e0ldin 81*ab 30. i different ho' Repor)

1. SUPPLEMENTARY NOTES

1. KEY WORDS (Continue an reveree side ii Re eisry 0d idenlil y block number)

.

20 ABSTRACT (Continue an reverse side i necoseay a d Identify by block numbs')

(see reverse)

DD ,o 1473
SECURITY CLASSIFICATION Of THIS PAGE (When Dote Entered)

I,% ., % % ,. % " % "" "'.,% 6 . " - • • , --. * . . . . " . .-21. " -"7A . . . " ," . " • - , " " " " ' " * ' , ' ' , ,



SECURITY CLASSIFICATION OF THIS PAGE (When Oate Entered)

19. KEY WORDS (Continuedl

20 ABSTRACT (Continued)

Abstract

Although recent advances in graphics workstations promise much computing power for the future needs of
researchers, traditional approaches to software organization waste much of this power. Most systems treat the
workstation as either a fixed-function terminal or a self-containcd personal computer; these roles have
limitations that can be overcome by considering the workstation a multi-function component of a distributed
system. I'raditional standard graphics packages and object-oricnted window systems offer important
functionality, but a third approach, virtual terminal management systems, is more appropriate for a
distributcd operating system.

'Ilic Stanford Distributed Systems Group has implemented such a distributed system for graphics
workstations. organized as a collection of seners providing services to clients. Major issues are how to
partitior functions between the server and its clients, and physically partition the server. In particular, the
service that displays graphical objects is called the Virtual Graphics Terminal Service (VG'1S). l'he VGTS
architecture is described, as well as a prototype implementation.

Sl'his thesis discusses the trade-ofls involved in partitioning of function in a distributed graphics system.
Performance is one important property traded for advanced functionality or decreased cost. To provide
adequate perfonnance in a distributed system. communication costs should be kept low. as well as the
frequency of the communication. Ily providing modeling as well as viewing facilities, the VG'I'S reduces the
communication required hetwcen applications and the service.

Mcasurements verify that perfonnance is insensitive to network bandwidth, but depends heavily on CPU
speed and Iprot ol characterisics. Using structure provides important speed improvements in some cases,
but other basic factors such as inner loop optimization and proper batching of requests make even larger
differences.

*!., Finally. conclusions are drawn regarding the partitioning approaches taken in the VGTS. The VGTS is
suitablc for a large class of applications that perform graphics as an aid to user interface, and is portable to a
wide range of powerful workstations. Moreover, the VG'I'S can be used as a basis for further research on
many open questions in distributed systems.
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Partitioning of Function
in a Distributed Graphics System

William I. Nowicki

A bst ract

Although recent advances in graphics workstations promise much computing power for the future needs of
researchers, traditional approaches to software organization waste much of this power. Most systems treat the
workstatkn as cithcr a fixcd-finction terminal or a self-containcd personal computer; these roles have
limitations that can be overcome by considering the workstation a multi-function component of a distributed
system. I'raditional standard graphics packages and object-oriented window systems offer important
functionality, but a third approach, virtual terminal management systems, is more appropriate for a
distributed operating system.

The Stai;ford )istributed Systems Group has implemented such a distributed system for graphics
workstations, organized as a collection of senrers providing services to clients. Major issues are how to
partitiorl Functions between the server and its clients, and physically p irtition the server. In particular, the
iervice that displays graphical objects is called th6\Virtual Graphics I cnninal Servicc).(VGTS). 'lhe VG'IS
architecture is described, as well as a prototype implementation.

-. 'is thesis discusses the trade-oTffs involved in partitioning of finction in a distributed grapiics system.
Performance is one important property traded for advanced finctionality or decreased cost. To provide
adequate perlormance in a distributed system, communication costs should be kept low, as iwell as the

' frequency of the communication. By providing modeling as well as viewing facilities, the VGTS,reduces the
communication required between applications and the service. .

Measurements verify that performnance is insensitive to network bandwidth. but depends heavily on CPU
speed and prot(col characteristics. Using structure provides important speed improvements in some cases,
but other basic CIctors such as inner loop optimization and proper hatching of requests make even larger
differences.

Finally, conclusions are drawn regarding the partitioning approaches taken in the VG'I7S. hllie VGTS is
V- suitable for a large class of applications that perform graphics as an aid to User interface, and is portable to a

wide range of powerful workstations. Moreover, the VG'TS can be used as a basis for further research on
" many open questions in distributed systems.
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INTRODUCION

Introduction

When computers werc first invented, their time was so valuable that elaborate batch systems were devised.
People would spend hours preparing commands and data to be read. processed, and printed out by the
computer. In the 1960s the concept of timesharing was introduced, dedicating inexpensive terminals to each
uscr, many of whom shared a computer. The first timesharing systems were modeled after batch systems, but
soon the advantages of interactive programming became worth the extra cost. Throughout the 1970s many
computer systems were designed specifically for timesharing.

Recent advances in VI .Sl technology make powerful yet physically small and inexpensive computer systems
feasible. Related advances in network technology have made computer systems that communicate to other
systems t&c rule rather than the exception. One of the ideas behind timesharing can be applied with today's
different cost constraints: replicate inexpensive components and share the expensive components.

1.1 Graphics Workstations

The computing resource dedicated to each single user is called the workstation. In timesharing systems the
workstation is just a fixed function terminal, but de falling cost of microprocessors results in a shift to more
powerful workstations. For the rest of the discussion we will assume that the workstation contains some kind
of programmable processor, some memory, at least one display device, and at least one input device.
Workstations are often connected in clusters, forming a workstation-based distributed system, as illustrated in
figure 1-1.

The advent of high-performance graphics workstations has been a mixed blessing. Inexpensive
micropr cessors seem to promise unlimited computing power to satisfy everyone's needs. However, now that
the information being processed and viewed is becoming more valuable than the hardware doing the
processing. old techniqucs for organizing computing systems are no longer valid. In particular, common
activities like information display often have processors deditated to them, but still require access to other
computing resources.

Although they are interconnected, most workstation systems built to date continue to treat the workstation
solely as a fixed-function terminal or a self-contained personal computer. More interesting roles exist
between these two extremes, especially considering the next logical step in the organization of computing
systems: many computing elements per user cooperating on the same task. To accomplish this cooperation,
the tasks must be partitioned or divided at appropriate points depending on many factors. This thesis
attempts to investigate and characterize some experimental attempts at partitioning in a distributed graphics
system. The goal is not a system that solves all the problems of distributed graphics, but rather to design and
build a prototype that can be used to evaluate one approach.

1.2 Role of the Workstation

It is fairly certain that both computing power and communication capability will become more pervasive in
the future, and these trends will continue for some time. At present, however, the bottleneck in the
development of network-based systems has become the software, with much of the potential of powerful
workstation hardware being unrealized. The first key problem is to find the appropriate role for the
workstation within the context of the whole system. There are three basic approaches to the role of graphics
workstations in a computing environment: as a terminal, as a personal computer, and as a component of a
distributed system.

S..5-
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Figure 1-1: A workstation-based distributed system

1.2.1 The Workstation as Terminal

When a low performance workstation is used with a timesharing system, it is convenient to treat the
workstition as a teninal 1911. 'iis concept applies not only io traditioniI alhllantmeric terminals, but also to
bitmap (called "alI points address ble' by I IIM) displays. Iitnp displ.tys contain an arac of nicmmory which
stores every pixel of thc displayed imnage. The advintages o4" using graphics terminals with timesharing
systems has been recognized f1or nany years, but te cost of the necessary display hardware, compute power,
and communications bandwidth has been prohibitive until recently [701.

One of the first graphics workstations with local network capability was the Alto, designed and built by the
Xerox Palo Alto Research Center (PARC) [1421. The AI)IS System 11271, the Alto Terminal Program [121,
and ) eutsch's Remote Bitlilt protocol 1471 were developed to allow programs on a timesharing system to use
an Alto as a display device across a network. I lowever. in each of these protocols all but the lowest level
viewing operations were done on one particular host, with the workstation only manipulating bitmaps. This
was due to the limited speed and main memory capacity of the Alto, designed in the ,-rly 1970s. Since

-,%
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INTRODUCION 5

current workstations have faster processors and larger memories, new architectures should take advantage of

this increased power.

Bell Lab's Layers System [105] for the Blit terminal [721, now called the Teletype 5620, provides a similar
bit-map interface to the application. An application can run on the terminal and communicate to a (single)

host using a higher-level protocol. Unfortunately, these protocols arc not standardized, and the Layers system

is only designed for one particular kind of workstation to communicate with one kind of operating system.

Since many users are only concerned with one operating system or one terminal, these systems may be
successful. In fact, the ability to act as a terminal is an important capability that should be included in any
workstation-based system. However, even the designers of the Layers system are working on a more flexible
approach that does not waste the power of more advanced workstations.

1.2.2 The Workstation as Personal Computer

For higher performance workstations, one popular approach is to construct a small model of a larger
timesharing system. This is a simple and powerful idea pioneered by the Alto computer at Xerox PARC, and
now adopted in many new products. Fxamples include the various Lisp Machines [161, the Perq [1441, and

many other new commercial systems being announced weekly at the time of this writing.

One principle motivation behind the personal computer approach is to avoid the partitioning problem, and
instead offer a single "integrated" system. But in reality each personal computer is isolated, resulting in a
highly partitioned system with the following practical problems:

" Cost: There are economics of scale involved in devices such as disks. For example, 30 10 Mbyte
disks cost much more than a single 300 Mbyte disk. A moderately sized disk would essentially
double the current cost of the workstation. Typically configured Lisp Machines sell eior $100,000
to $200,000. Since many organizations do not have $100 terminals for each member, they
certainly will not spend 200 times that amount for a single user.

" Reliability: An office environment is not as controlled as a clean, air-conditioned machine room.
Preventive maintenance and repair of delicate mechanical equipment is much easier for
centralized facilities.

" Flexibility: The personal computer model provides for rigid control on the number of users; if
you are not one of the few who own one, or find one to share, you can not use any computing
resources during peak hoors.

" Perrormance: There are two aspects of performance. Although fast response to user interaction
(such as editing [57]) favors personal computing, high-throughput and low-interaction activities
(such its compilation) favor large shared processors.

* Conirort: Adequately sized disks are large and noisy, producing an unwelcome intrusion into the
office environment, with assmoialed power requirements and heat dissipation problems. For
example, the Xerox I IN)I lisp workstations at Stanford are physically centralized, with only the
displays and keyboards outside the machine room.

" Duplication: Many of the files on each disk are duplicated. This obviously wastes space, but
more importantly, it causes problems with propagation of updates and useless duplication of
software maintenance effort.

'lcre will still be many commercially successfil personal computer products. For example, the entire

UNIX ti111 operating system has been ported to a workstation with a local disk interface for each
workstation 168, 118]. Reasons for this success include the value many people put on total control, and the
'personal" nature of much computing [116]. For instance, a small business would probably initially prefer
one self-contained personal computer.

* .~. .



6 PARTITIONING OF FUNCTION IN A DISTRIBUTED GRAPHICS SYSIEM

However, if that business outgrows the single personal computer, and wishes to share large distributed
databases, the problems described here will eventually arise. Except for the low-performance computers
purchased for home use, most so-called "personal" computers used for science and busness are actually
purchased by some group or department, and are therefore actually shared. Furthermore, the high cost of
these scientific workstations has limited shipments to only a few thousand units 1153]. For larger, multi-
person projects that are performed in research and development environments, small self-contained systems
are not always desirable.

Even if workstations are available, current researchers still heavily use centralized server hosts. The
following are some reasons it might not be possible or desirable to run all applications on the workstation:

* The application may require fast floating point hardware.

e The application may require large virtual or physical memory.

* The application may require frequent access to a large database.

* The application may be written in a particular language or dialecL

* The application may require a license to run on each different CPU.

e The application may access secure information that should not be transmitted over a network.

* The application may perform I/O directly to a particular device.

* The application may contain dependencies on a particular machine or operating system.

Even if the necessary resources are available as an option for the workstations, they are often too expensive for
widespread use.

One could argue that since hardware costs are decreasing, the personal computer model will inevitably
dominate in the end. But the decrease in hardware costs means that software costs become relatively more
important 11561. It is well known that the largest portion of software life-cycle costs goes to maintenance [18].
'llierefore, ease of software maintenance should be an important issue in evaluating a computing system
architecture. With individual personal computers, all users have to do their own software maintenance. This
results in a potentially enormous increase in the costs associated with distributing and installing new versions
of software.

Even considering only hardware costs, self-contained personal computers may eventually become more
expensive than other alternatives. One might reason that since memory costs are decreasing, and memories
are getting more dense, the trend will be to computer systems with higher ratios of memory to processing
power. However. a typical computer ten years ago was an IBM System/370 with about a million bytes of
physical memory 1104). 'l'oday. a representative computer is the IBM PC. with almost half the processing
speed. but only one tenth as much memory, lypically aboutl 10)K bytes 1541. Ofcourse the lower price of the
'C means that many more people can alliwd one. On the other hand. the organi/aItion thai ten years ago had

a 370/138. can now atTord a imachinc with a processor atmut eight times f'aster and sixteen times as much
memory. I arge computers are expanding principally by adding memory, while smaller computers are getting
less expensive principally by keeping memory small.

More interesting evidence is the relative price of memories and processors. Today an MC68000 processor
costs about $50, and a 64K bit memory chip costs about $5. 'Ihus. if a system has more than about ten
memory chips per processor chip, the memory cost will dominate. Since the cost to produce integrated
circuits in large quantities depends mostly on packaging considerations such as the number of pins, the ratio
of processor to memory cost will probably stay fairly low. 'Ibhis provides motivation to design computer
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systems that take advantage of low-cost processors by replicating them for each user, but share expensive
resources such as memory.

1.2.3 The Workstation as a Component of a Distributed System

Since most researchers who use personal computers quickly recognize the problems caused by isolation,
manufacturers usually provide some form of communication capability. For example, a file transfer program
may be used to transfer files either explicitly or semi-automatically between the personal disks. Other
approaches use a remote disk or logical file system to intercept operations at the appropriate level, and route
them instead to a remote disk or file access user module. There are many practical reasons to eliminate
expensive components such as secondary storage from each workstation. A diskless workstation is
inexpensive, small, quiet, and has almost no moving parts to break.

Several efforts, such as Locus at UCLA, modified standard operating systems to allow shared and replicated
file systems [1501. Ierkeley 4.2 UNIX was intended for diskless operation, although for performance reasons
most 4.2 systems still have local disks, and all programs still run on the workstation [681. Some attempts
extend timesharing systems to handle remote execution [531, but a more comprehensive solution is needed.
The file service abstraction, developed in projects such as Woodstock [137], can be generalized into the server
model, resulting in more flexibility of interconnection.

1.2.3.1 The Server Model

'he architecture to be presented in Chapter 3 treats the workstation as a multi-fimction component of a
distributed system. We do not waste its power by treating it solely as a terminal, nor do we isolate it from the
rest of the world, under the false assumption that it can be all things to all users. Rather, by supporting a
distributed operating system the #orkstation may perform any function best suited to the user, the hardware,
and the applications at hand [79, 86, 109, 155]).

In this view, the operating system is just a collaction of servers, and a way of accessing those servers. An
implementation of this model usually consists of cooperating kernels providing an inter-process
communication system, and services implemented as processes'. 'Ibc kernel of a server-based operating
system acts analogously to a hardware bus, being essentially a communications switch. In addition to the
physical wires used to connect modules in a hardware bus, a standard protocol is agreed upon to define the
semantics of the communication. Similarly, in our software model, in addition to the ability to send message,
a protocol is dcfined for the meaning of the messages.

'1iis model does not make the system versus user distinction; the design is in terms of "clients" which
Sinvoke the services of a particular server. For example, the concepts of "terminal" and "personal computer"

are now merely roles played by some collection of processes and processors at any given time. 'The result is
much more flexibility in the partitioning of the resulting system.

V, "1.2.3.2 Network Transparency

By considering the workstation as a component of a distributed system, we could consider a single
underlying communication concept for "network transparency." In general, network transparcncy is a
worthwhile goal: programs should be as independent as possible of the location of their execution and the
resources they use. However, every system has a boundary on this transparency, so the problem of
communicating to the outside this boundary must be addressed eventually. In fact, all the computing

In fact in many ways the kernel itself can be viewed as a server. providing objects such as processes and mesacs.

'# ,
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resources in the world can be considered a single computer system, with many disconnected components.
'Ibis motivates communication between various kernels which may have vastly different underlying
communication concepts, resulting in what might be called a distributed kernel. Network communication
always has some cost associated with it, so perfect transparency is never possible with respect to performance.
Chapter 3 describes a system which has been developed to help address some of these issues.

1.3 Kinds of Partitions

The hardware trends discussed in the previous sections result in a physically distributed computing system,
with a corresponding partition required of the software. There are several forms that partitioning can take,

some of which are introduced below.

1.3.1 Physical Partitions

Computations can always be done more efficicntly on machines that are built specifically for a particular
purpose. For example, a machine with large and fast disks is needed for fast searching of databases, while
interacting with a user requires powerful graphics capability. 'Ihis suggests a physical partitioning by putting
particular operations onto specially built machines.

Partitioning has a long history in the field of computer graphics. Due primarily to the high cost of
hardware, graphics systems of the 1960's consisted of relatively powerless graphics devices connected directly
to relatively large-scale computers, either single-user or time-shared. However, as the graphics devices
became more sophisticated, the load on timeshared hosts, in particular, became insufferable.

Fortunately, the minicomputers of the 1970s led to satellite graphics systems that served to offload a
variable amount of graphics functions on to another machine [51, 55, 62, 148]. By judicious partitioning of
responsibility between the host and the graphics device, it was possible to achieve both better response and
higher throughput. 'The more powerful the graphics processor, the more functions that could be omoaded,
until the satellite system took on the appearance of the host. Taken to its extreme, this branch of evolution
led naturally to the personal computer - completing a round on the Wheel of Reincarnation 11011, as
illustrated in Figure 1-2.

In configuration I of Figure 1-2. the processor directly controls the display device. In configuration 2, the
display commands are accessed directly from the processor's memory. In configuration 3, a special dual-port
memory hold the display commands. In configuration 4, a second processor has been added to send
commands to the display from the display buffer. The display control is similar to configuration 1, except for
ie communication channel to the main CPU. At each step through this cycle the partionability problems
must be addressed. In fact, the amount of distribution of finction increases at each cycle.

For the 1980"s, increasingly powerful workstations, together with the proliferation of networks, have made
truly distributed graphics possible. 'lhe higher Iaiidwidfli of available networks. when compared 1o that of
previous host-satellitc interconnections, makes it even more Iasible to achieve better pcrlbrinance by
partitioning the application between machines, especially if the remote host is significantly more powerful
than the local workstation. Moreover, it is now possible for a single workstation to have access to multiple
backend machines, possibly simultaneously. Many of those machines may support graphical applications that
can not be executed on the workstation - due to memory or language requirements, for example -but can use
the workstation for output.

On a hardware level, a given computer system may contain several different processors, and even a single
processor may be implemented as several functional units. This is consistent with further travel on de Wheel
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Figure 1-2: The wheel of reincarnation

of Rcincrnation model cited above. These parallel architectures provide much promise for the future, but
this thesis will concentrate on partitioning at higher levels. Beforc experimenting with partitioning problems
into many pieces (which will be required by future hardware), we should have a good understanding of how
to partition them into two pieces.

" 1.3.2 Logical Partitions

In addition to the physical partitioning that may be motivated by cost and performance, experience in
developing local area networks by the author has resulted in the realization that long before networks reach
their physical size limits, they usually become unmanageable once they span several bureaucratic boundaries.

*, Fven if the network is physically contiguous, artificial division along organizational lines is often desired.

*There is also a more fundamental logical partitioning between graphics systems and the application
program. That is. system designers must determine which facilities the graphics system should provide and

* which the application should provide. Similarly. even when the I'unctions ol' the service are decided upon, the
server may be implemented in many ways by partitioning its functions between modules or processes, for
example.

1.3.3 Static and Dynamic Partitions

Another attribute of the partition is when it is performed. A static partitioning is performed once when the
program is designed, configured, or initialized. More ambitious projects might try to partition dynamically
during run-time. Load sharing is the usual motivation for dynamic partitioning. 'Ihis involves migrating tasks
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to more evenly distribute the load among several computer systems. I oad sharing can be used only when the
systems arc relatively homogeneous. In this work we will deal with heterogeneous systems consisting of
dedicated workstations and centralized server hosts.

There have been a few attempts at dynamic partitioning in heterogeneous systems, by assigning tasks to
either the mainframe or host depending on current workloads. For instance, the ICOPS system at Brown
University attempted to perform dynamic partitioning1146, 128]. One application using the Brown
University Graphics System (BUGS) was dynamically distributed between a mainframe and a
minicomputer [97]. In another example, the CAGES system at the University of North Carolina automatically
generated the linkages at compile time for distributed graphics programs written in PI./i [62]. More
interesting would be a solution to the problem of handling multiple applications or multiple languages
simultaneously.

We shall see enough problems with static partitioning that it is not clear if dynamic partitioning is worth the
cost. In either case, efficient techniques for static partitioning and effective measurements and evaluations are
prerequisites to solving the more general problem. Without the ability to easily experiment with static
partitioning, dynamic partitioning should not even be attempted.

1.3.4 Total and Partial Partitions

Unfortunately the word "partition" has taken on a fairly specific meaning in the terminology of networks.
It usually refers to a single network that is divided into two or more totally disconnected smaller subnetworks
because of a failure of one or more components. A typical example of this kind of partitioning involves the
failure of several links or a gateway, causing a network to divide into disconnected parts. It is desirable to
continue functioning as much as possible within each network partition.

However, if the disconnected subnetworks never reconnect, then the problems are just the same as those of
several smaller networks in isolation. The interesting situations occur only when the parts are reconnected,
and inlbrmation flows again between the parts. Experience with the Stanford University Network has been
that in reality slow or partial degradation is much more common than total failure.

This thesis concerns itself only with the information flow between the parts of a connected system, not the
details of recovery from link errors after total partitions. A partial partitioning, in which communication
between the parts is possible but more costly than communication within each part, may be inevitable or even
desirable. Additional reasons for this will be discussed in in Chapter 5, in particular the sections on future
computing system organizations.

1.3.5 Protocol Design: the Result of Partitions

Many critical choices must be made when designing the protocols or interfaces between the parts of a
distributed system. The protocols should be at a high enough level to make the conlinunication efficient, hut
flexible enough to allow for nost users' needs. The dcsigner muost anticipate the degree of fuinctionality that
users will want. and provide enough services to achieve that flunctionality, or else the system will be too
restrictive to use. At the same time, if the service provides too many features, or requires too much interaction
with the client, the performance will not be adequate. 'Ibis thesis evaluates the protocol choices made in one
design of a distributed graphics system.

.4..,"
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1.4 Overview and Major Contributions

The spectrum of roles for graphics workstations from fixed-function terminal to self-contained personal
computer was examined in this chapter, along with motivations for the study of the partitioning problem for
distributed graphics systems. The next chapter discusses three different approaches to related problems:
traditional standard graphics packages, object-oriented window systems, and virtual terminal management
systems. Chapter 3 presents the Virtual Graphics Terminal Service architecture in fairly abstract terms. In
particular, the protocol between the server and a client application program is specified. Chapter 4 describes
a prototype implementation of the Virtual Graphics Terminal Service, the VGTS user interface, and a sample
application program. Chapter 5 investigates some issues involved in partitioning of finction, the rationale
behind the choices made in the VGTS design, and some simple performance models to motivate experiments.
Chapter 6 gives the results of these measurements, and discusses the cost/performance tradcoffs. Finally,
some conclusions and directions for future work are drawn in Chapter 7.

Although many people were involved in the development of the VGTS, this thesis concentrates on the
following major research contributions by the author:

1. 'he virtual terminal concept was extended to support graphics by incorporating support for
structured display files, as well as conventional textual interaction. The abilities of virtual
terminals to support multiple distributed applications are combined with the power and
portability of structured display files.

2. The application interface for defining graphical objects was specified and implemented separately
from the user interface for viewing those objects. Both the advantages and disadvantages of this
strict separation are discussed.

3. lhe protocol used for defining objects was extended transparently across networks using several
transport protocols, resulting in distributed graphics programs. 'hew programs were actually
used, so performance constraints were stringent.

4. Measurements were performed to determine the effect of various factors on performance of
graphical applications. The measurements verify that performance is insensitive to network
bandwidth, but depends heavily on C13U speed and protocol characteristics. Using structure
provides important speed improvements in some cases, but other basic factors such as inner loop
optimimation and proper batching of requests make even larger differences.

The results show that the VGTS is suitable for a large class of applications, and can be used as a basis for
much further research.

CV.



12 PARTmI'ONING OP FUNCTION IN A I)ISTRIBUTE3D GRAPIIICS SYSTE-M

'.4-2:

N.
4. ,%

* -.

- 4-

1-l' "

4/"



RELATED WORK 13

-2-
Related Work

This chapter compares the evolution of three separate kinds of systems related to distributed graphics, as
illustrated in Figure 2-1. The arrows in this Figure arc drawn in the direction of control flow. The first and
oldest line of development is the traditional standard graphics package, with the application programmer in
control over a graphics library. The second deals with so-called "object-oriented window systems" for
personal workstations with the user in ultimate control. Finally, a third concept, virtual terminals, combines
both other approaches, with the user in control of the viewing process while the applicalions control the
objects being displayed.

Applications

Application User Methods

Virtual

Graphics View Graphics Terminal

System Manager System

Terminal User Terminal
User Terminal

a) Traditional standard b) Object-oriented c) Virtual terminal
graphics packages window systems management systems

Figure 2-1: Three kinds of approaches

2.1 Standard Graphics Packages

It is important to examine the long history of Computer Graphics to discover what functionality has been
determined to be important. Although many efforts have involved ad hoc systems to produce a particular
picture or support a particular device, several standard efforts are more promising for out needs. Although
we are concerned with distributed systems for workslations. standards have the advantage of making graphics
software more readily available. Standards should also be studied so the common concepts and terminology
can be developed to compare different approaches.

IlArly graphics systems were usually "packages" of functions called by application programs. The few
doninant manufacturers of graphics devices, such as Calcomp and Tektronix. established de fiwlo standards
until the 1970s [761. Users first would link a program with the appropriate object library. When tie program
was executed it would read some input data and produce output through the graphics functions. Since
graphics devices were expensive. a package was usually concerned with one kind of device. If the user wanted
output on another device, either the program could be linked with another version of the graphics library, or
ie library would handle several possible graphics devices at run-time.

'llicse types of graphics systems arc most common since they have been in use for many years, and thus are
the subject of many standardization efforts. Figure 2-2 gives an overview of the interfaces between
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components of traditional graphics packages. At the highest level arc application databases where models are
stored. One standard database format is called IGt-S for Initial Graphics Exchange Standard [31. This is a
common database format to allow a user to exchange computer aided design data between systems of
different manufacturers.

Application
Database

UIGES

-I
A p p l ication Program

GKS, Core. PHIGS, etc.
" -" Metafile

!-:," I G ra p h ic s P a c ka g e

.,HardwareDeieNP S

Standard Driver Converter

Device . NAPLPS

D~vc ~evice

NAPLPS
Device

Figure 2-2: Standard graphics package interfaces

The application's interface to the graphics system has seen the largest amount of standardization, with many
similar but incompatible standards for this level such as GKS, CORIE, PIIIIGS, and others, to be described in the
remainder of this section. Some attempts at lower levels of standardization include: VI)I, between the
graphics system and the device driver, and NAI IP.S, between the device driver and the device.

2.1.1 The SIGGRAPH CORE Graphics System

'Ilic ACM Special Interest Group on Graphics (SIGGRAPII) Graphics Standards Planning Committee
report. commonly known as CORI-, has become widely used as a model for graphics systems 11471. One major
motivation for this standardization attempt was the undesired distinction made at that time between directed
beam (vector refresh) graphics devices, and storage tube (and hard copy) devices. The importance of device
independence was emphasized at the 1976 Computer Graphics workshop in Scillac, France [601. This
workshop attempted to unify the treatment of the two kinds of graphics devices, and formed a basis for many
subsequent graphics packages such as CORE.
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2.1.1.1 Device Independence

Hard copy and storage tube devices have a simple physical concept of a current location. For example, in a
pen plotter the location of the pen was obviously visible. A sequence of move and draw commands was the
most natural way to think of how a pen plotter created a picture. 'he CORE system extended this move and
draw concept to three dimensions, using a synthetic camera analogy. Other state information such as the
color or size of the pen, was also extended into the COR- system. The application constructed a model of the
object in its own internal data structures, and would use the graphics package only for viewing operations.

On the other hand, directed beam graphics devices usually had display lists, which were traversed
repeatedly to display the picture. Changing one element in the display list would instantly change the item,

. being displayed, while storage tube and hard copy devices would be erased and redrawn completely for any
modifications besides additions. CORE used the concept of segmeni to represent this retained graphics
information.

2.1.1.2 Coordinate Systems

Another important contribution of CORE was the understanding of the importance of different coordinate
systems. The CORI. System and most other subsequent graphics packages deal with three coordinate systems:

1. World Coordinates (WC) are arbitrarily defined by the applications programmer. In CORr these
are floating point numbers in either two or three dimensions.

2. Normalized l)evicc Coordinates (NDC) are used to define a uniform coordinate system for all
display surfaces. In CORE these are two dimensional floating point numbers between zero and
one.

3. I)evice Coordinates (DC) represent the actual units used by the display device, usually unsigned
integers of ten to sixteen bits.

CoRI implementations map from world coordinates to normalized device coordinates, with a driver for each

dc ice mapping from normalized device coordinates to actual device coordinates. This allows most of the
graphics package implementation to be retained when new graphics devices arc introduced.

2.1.1.3 CORE as a Standard

The CORI: System was defined as a set of language-independent functions, with the mapping from the

abstract function names to programming language identifiers left undefined. This resulted in
implementations that were incompatible in many details, although system models and basic concepts were
fairly consistent across most implementations.

Although the CoRI: system was proposed in 1977, and was revised in 1979. in five years it has not yet
become an official standard, and may never become one, due to the success of Iuropean standardimation
eflbrts. There has been much inore experience in the areas of portability and device independence since the
I979 rcport, as well as some rccoiisideration of the way modcling and viewing were separated in CORI: 11331.
Since these issues are also important in a distributed system, the CoI:i system was not suitable for our work.
I lowever, COR: influenced subsequent standardization attempts, described in the next sections, that have
overcome some of its problems.

11
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2.1.2 The Graphical Kernel System

The Graphical Kernel System [641 has become a popular standard that started in Europe with the German
DIN (Dcutches Institute fuer Normung) and spread to America. German standards are specified and
adopted more quickly than American standards because )IN is a government body while ANSI is a volunteer
organization requiring the consensus of competing industrial representatives. Although they are intended to
be as close as possible, there are some slight differences between the ISO GKS and American National
Standards Institute Committee on Computer Graphics Programming ILanguages (ANSI X3t13) version of
GKS. Most notably, due to the complexity of the GKS standard (which already has nine levels of subsets)
ANSI committee X3H35 has defined a subset of the lowest level of functionality, called the Programmer's
Minimal Interface to Graphics, or PM IG [122, 21.

2.1.2.1 GKS Workstations

GKS uses the workslafion concept to represent some logical input devices and one associated output device.
Ibis is in contrast to CORE in which only supports one view surface and does not support any relationship
between input events from different input devices. GKS explicitly states that one application can manipulate
multiple workstations, no mention is made of several applications sharing a single workstation. Ihe idea of
placing the I/O devices on a physically separate machine from the one running the application program was
one of the original motivations for the workstation concept [481, but most implementations of G KS have run
on only one machine. Section 2.1.2.7 will discuss the problems involved in a distributed GKS
implementation. Ihe distribution capability has some subtle but important effects on the structure of GKS.

2.1.2.2 GKS Output Primitives

The graphics primitives used in GKS, similar to those in CORI., are the following six:

1. Polyline: A set of connected lines drawn between a list of points.

2. Polyniarker: Symbols of one type are centered at given positions.

3. Text: Character strings are drawn at a given position. There are many attributes to control the
orientation, spacing, and justification of tcxt.

4. Fill Area: A polygon which may be filled with a uniform color, pattern, or hatch style.

5. Pixel Array: An array of pixels with individually specified colors or intensities is displayed.
6. Generalized Drawing Primitive: A set of points is transfonned and passed through to the device

dependent driver.

The generalized drawing primitive is intended to take advantage of special functions of the workstation, such
as the ability 1o draw arcs or curves. Note that there is no notion of cuirren position as in CORIF and
operations arc in two dimensions only. Three dimensional extensions are currently under development.

2.1.2.3 GKS Attributes

Abstracting slightly from the hard-copy analogy, GKS and CORI: retain current values for each of several
attributes, representing the state of the drawing device used for relevant output primitives. Thus. although the
notion of current position does not appear in GKS. the stite variables necess.ary to simulate a drawing device
are still needed. For example, the polyline primitive has line-type (solid, dashed, etc.). width, and color
attributes. Ilowevcr, in GKS bundle labh's can be used to group attributes. Instead of specifying every
attribute on every output primitive, an index into the bundlc table (a small integer) is specified, and the table

%1
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gives values for all the attributes. For example, instead of specifying a color absolutely everywhere it is used,
it could be defined only once to simplify changes.

2.1.2.4 GKS Segments

GKS segments are named with integers specified by the application. Segments may be transformed, made
visible or invisible, highlighted. ordered from front to back, deleted, renamed, and inserted into other open
segments. Every primitive within a segment can have an attribute called the pick identifier which establishes a
second level of naming for use with the pick input device. However, the primitives within a segment cannot
be modified; the pick identifier serves only to distinguish parts of a picture used for graphical input. 'Ihere is
an explicit finction to set the pick identifier. All primitives added to the segment until the next call to this
function wll have the same pick identifier.

In GKS segments can be posted on actual workstations, called Workstation Dependent Segment Storage or
WI)ss. In addition segments can be sent to Workstation Independent Segment Storage (WIss). Segments can
be moved back and forth between WIss and WoSs (actual workstations) under control of the application

, program.

2.1.2.5 Graphical Input in GKS

The concept of logical input devices was used as a basis for extending device independence to graphical
input in GKS as well as CORF [1521. The CORF system treated input and output functions as orthogonal
concepts. so, for example, the selection of view surfaces had no effect on echoing. On the other hand, GKS
associates logical input devices with workstations. G KS provides the following classes of input devices:

Locator Provides a position in world coordinates and a transformation number, determined by the
viewport in which the input occurred. A trackball or joystick is the typical locator device.

Stroke Provides a series of positions in world coordinates and a transfonnation number.

Valuator Provides a single real number scalar value, from a one-dimensional device such as a rotary
dial.

Choice Provides the ability to choose among alternatives, like the button device in CORE. A non-
negative integer indicates a selection, and zero indicates no selection.

Pick Provides a pick status, a segment name and a pick identifier (the item "picked"). Primitives
outside segments cannot be picked. The typical pick device is the light pen, which senses
when the beam of a CRT passes over the point underneath its tip.

String Provides a character string, similar to the keyboard device in CORE.

'llie original GKS specification did not have the stroke device class, since it can easily be built on top of other
primitives. give, a suitable scnantic mnodel of inputl devices 1I 13].

At any time a logical input device is in one of three modes:

Request Allows the input device to accept request commands. When the application issues a request, GKS
waits until input is entered, or the operator enters a break action. Control is then passed back to
the application.

Event GKS maintains an event queue. An event report on this queue contains the logical device
number and a value from that device. Events are generated asynchronously by operator action.
An application can wait for an event, remove it from the queue, or flush events from the queue
without reading them.

............................ ................
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Sample Allows the input device to accept sample commands. Sampled devices do not cause events on any
queue, but arc instead polled by the application. When the application issues a sample command,
GKS returns the current value of the device without waiting.

2.1.2.6 GKS as a Standard

Like CORF. GKS was defined as an abstract set of operations instead of a particular interface in a particular
programming language. However, efforts are underway to standardize language bindings, so there is a greater
chance that GKS programs can truly be portable. A FORTRAN binding is included in the ANSI standard, and
work on other language bindings such as C [114] is underway. Unfortunately, even these standard binding
efforts are hampered by the many different dialects of these languages.

Full GKS (highest levels for both input and output) includes 110 functions plus 75 inquiry functions. The
lowest level of ISO GKS requires 52 functions plus 38 inquiry functions. The lowest level of ANSI GKS (no
input) requires 31 functions plus 17 inquiry functions [122]. Of course, counting the number of finctions is a
very coarse measure of complexity, but by most measures GKS seems to be a much simpler system to
implement than CORE. There are proposals for 31) extensions to GKS, since this lack is the major reason why
American groups like SIGGRAPII oppose the standard.

2.1.2.7 A Distributed Implementation of GKS

One of the principle advantages of GKS for distributed workstation-based systems is the ability of the
workstation concept to allow potential distribution. A recently-announced product called NOVA*GKS is an
implementation of GKS that can be distributed across several machines, but still allows only one application
to be run at a time, and handles only one host at a time [149]. Nevertheless, NOVA*GKS can be examined as an
example of a distributed graphics system using GKS. The NOVA°GKS implementation consists of four major
layers:

1. GKS Interface - provides the functions specified in the GKS standard, implemented as modules
that are linked with an application program.

2. Workstation Manager - handles device independent aspects of workstations, including
workstation independent segment storage (WISs).

3. Workstation Supervisor - provides software simulation of GKS functions that are not directly
supported by the physical workstation or the device driver.

4. l)evice Driver - low level device driver, which implements the graphics primitives and maps into
device coordinates.

Bctwccn each set of layers, an interesting coupling scheme is used. Instead of directly calling the functions in
the lower level. all accesses must funnel down.through a single lower level siquervisor function. 'Ih lower level
supervisor can then cither be a large case statement which fans out io all the appropriate lower level
modules, or it can encode the functions over a communication line to a rcmotc processor, where the fan-out
then takes place. 'llius the choice of where the communication takes place and even tie kind of protocol used
can be done at link-time with no changes to the rest of the package.

2.1.2.8 Adding Structure to GKS

Proposed G KS output level 3 supports structured segments [130). "lhe later Chapters of this thesis provide
evidence that structured segments provide perfonnance increases in a distributed environment. As the name
implies, this proposal is upward-compatible with the other levels ofGKS. 'Ilic main addition is the ability of
segments to call other segments. An existing segment can be reopened for editing, and elements can be
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inserted and deletcd. Editing is performed using an elemen numnber, an integer count of elements within a
segment. For example, the first element in a scgment is number 1, then 2, etc. It is not clear what happens
when an clement is added or deleted from the middle of a segment - probably all the elements change their
numbers, leading to possible confusion. For this reason labels may be used to-refer symbolically to elements
instead of using their numbers. Labels are known only within a segment; separate external names are used to
name whole segments.

The transformation of each primitive is the concatenation of all segment transformations of the ancestors of
the primitive. Thus a stack of matrices is stored, starting with the identity transformation, multiplying the

-.. current matrix by the call transfonnation matrix and the called segment transformation matrix, and pushing
the result onto the stack for each segment, starting with root segments.

'[ihe contents of segments can retrieved, and segments can be stored on metafiles. There is a call to write
private data to the segment, which seems to indicate a desire to use the segment facility as an application
database. A total of 15 new functions are added to GKS for this level, so the complexity of GKS is increased
only slightly. However, run-time overhead could be significant, since a total of 29 attributes (in addition to
the transformation matrix) are pushed and popped during each segment traversal. The GKS output level 3
proposal was a reaction to the PI1IGS effort to be described next. The principle advantage is compatibility
with many GKS implementations and applications currently being built.

2.1.3 The Programmer's Hierarchical Interactive Graphics Standard

A more recent standardization effort has produced the Programmer's Hierarchical Interactive Graphics
Standard (Plu~s)141. As its name implies, Pos allows arbitrarily deep hierarchical specification of
graphical objects, instead of the less general segmentation mechanism in CORe and current KS. One of the
gtated reasons for this more elaborate structure of objects is the increased effectiveness of making changes to
the display in support of interactive graphics. An important design criterion was to provide adequate
performance in interactive applications, by taking advantage of today's more powerful graphics workstations.

1'he actual display primitives in PlluGs are similar to those of GKS, although they appear in a more
elaborate framework. There are both 2-dimensional and 3-dimensional functions. l)isplay primitives, along
with attributes, viewing operators, modeling transformations, and references to other structures, can all be
clcments of a structure. Structures can be edited, by deleting and inserting elements.

Pt IIGS includes the concept of workstations, but workstations do not logically store the graphics data. An
application program defines a picture by adding entries to the device independent structure database. The
workstation driver then reads the database to cause the physical terminal screens to be drawn. Each
workstation has at most one fixed-size rectangular viewing surface, and may have any number of input
devices. Workstations have descriptor tables that describe the capabilities of the workstation. 'he
applications program can inquire about which capabilities are available and adapt accordingly. Although
prograns written using this feature can work on several different types of worksLations, the application
progrannmer niust anticipate all possible configtirations when tile progranl is written.

Each auribute corresponds to a "register" of a virtual workstation; these registers are changed by commands

in the header of each structure, and obje.ts are rendered in the color that is in the register.s at the time of the

rendering. Unfortunately this introduces much complexity th de device driver, because it must keep track ofthe state of all of these virtual registers.

-4,46



20 PARTITIONING OF FUNCTION IN A DISTRIBUTED GRAPIIlCS SYSTEM

2.1.4 The LBL Network Graphics System

The Network Graphics System was developed by Lawrence Berkeley Laboratories as an extension of CORE
for a network environment 1241. Although this is an on-going development cfforL as opposed to a proposed
standard, NGS is similar in spirit to PIIIGS. I.ike GKS and CORE, it was designed for vector refresh and
storage tube devices, and later extended to raster devices.

The Network Graphics System allows the definition of hierarchical structures, which can be deleted or
" ,. appended, but not otherwise modified 1251. Attribute information is stored separately from the object

definitions, so it can be changed dynamically. Attributes can be bundled, or controlled explicitly and
individually. Even though bundling capability is provided, the authors state that direct control is expected to
be used most often.

2.1.5 Virtual Device Interface and Metafile

Since most graphics packages use some form of normalized device coordinates, this is another logical
candidate for a standard partitioning point. The graphics package can be written in terms of a virtual device,
which is then implemented on the physical device. Tihe Virtual Device Interface specification (VDI) is yet
another graphi:s standardization effort of ANSI committee X31133 [7]. As shown in figure 2-2, the Virtual
Device Interface specifies the low level target for graphics packages. The Virtual Device Mctafile (VDM)
standard 151, similar to that developcd at Los Alamos National Laboratory [110], is an encoding of the Virtual
Device Interface into a stream of bytes to be stored on a file.

As indicated in Figure 2-2. the VDI specification could be realized in a real device, or at least a "black box"
which the user treats as a hardware device. 'he device drivers would be written by the manufacturer of the
graphics device, instead of the author of the graphics system. Since the VDI specification is precisely defined,
it should be possible to put the implementation of the the virtual device on a different machine than the one
running the graphics package. Unfortunately, this interface involves both a high frequency and large amount
of information interchange. 'Thus it may not be suitable for partitioning when communication costs are high.

2.1.6 Videotex and Teletext Systems

Other systems have been developed for situations with high communication costs between the graphics
system and dhe device. FExamples that deal with partitioning are Videotex and Teletext. Videotex is an
interactive communications service that delivers color graphics information from centralized databases. This
infonnation is most often delivered over telephone lines, decoded by a dedicated hardware device, and
displayed on a television monitor. Thus, videotcx is intended Ibr direct use by consumers, combining two of
the most familiar pieces of electronic equipment in most homes today: the telephone and the television set.
In addition to providing information. videotex allows users to perform transaction such as ordering products.
One of the major standards in this area is the North American Iresentation I.evel Protocol Syntax
(NAP'I ms) 161. Since icleplhone companies in I .urope are generally smaller and run by die government, there
have already been several videotex systems in operation in Britain (I)RF siI.) and France (ANTITOI.F).

Teletext is a similar technique designed to bring information service to home consumers. I However, teletext
uses one-way broadcast transmission, often through cable television systems. 'lhe major standard in this area
is the North American Broadcast Tl'eletext Specification 1111. 'Iis standard specifies exactly how the messages
are encoded for transmission. which are the lower levels (physical to transport) of protocols. The data can be
transmitted on standard television channels, during the vertical blanking interval, or entire channels can be
dedicated to teletext. 'llic presentation level of NAM'I'S is NAPLPS.

Unfortunately, since these protocols are directed to a consumer market, they are limited in their abilities.

'mAA
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For example, they arc often tied to specific common video resolutions that arc lower than typical scicntificworkstations. More importantly, they are intended for very inexpensive terminals, so they would waste the

power of most modern workstations. In particular, they handle only one activity at a time. Since we are
interested in future computing systems that contain multiple processors executing concurrently, we will next
examine systems that can manage this concurrency.

2.2 Object-Oriented Window Systems

The desire to use graphics as an aid to user interface has led to the development of object-oriented window
systems. In these systems, there might not be application programs, per se, but rather objects that respond to
the control of the user. An interesting paraphrase of the object-oriented window system philosophy is "don't
call us. we'll call you". llat is, instead of the application program calling Functions in the graphics package,
the graphics system calls user-defined functions to display themselves when needed. This mechanism, the
graphics system calling client software, is referred to as an up-call, in contrast to down-calls of traditional
graphics packages.

'This difference in control reflects the different application areas for which these systems were developed.
'he graphics systems discussed in the previous section consider the picture to be the main purpose of the

program. 'Ibus they are suitable for application areas such as commercial animation in which realism and
precise control of the picture are most important. However, many programs are intended to perfonn some
other function, with graphics as a side-effect. For example, the principle function of an integrated circuit
editor is to edit integrated circuits, not to draw beautiful pictures of them. In fact, the information being
displayed by programs is often abstract, so "realism" is meaningless in these cases.

hi!.

2.2.1 Smalltalk

Smalltalk is a series of languages based heavily on graphics with an object-oriented window system [581.
The language was first designed as a tool for research by the I.carning Research Group at Xerox Palo Alto
Research Center. In their view, the ideal system would use powerful yet compact and portable "personal
dynamic media" which students could use and interact with 1901. 'he ideal personal dynamic media was
called the dynabook, and corresponds to a futuristic view of today's graphics workstations.

A Smalltalk system is composed of objects, which consist of some private memory and a set of operations.
The programmer specifies these operations as me/ids that are invoked when objects receive messages.
Advantages of such an approach include extensihility, applications can define their own graphics objects and
primitives because screen updating is controlled by the application itself. On the other hand, the programmer
can declare a class to be a subclass of another class, so that operations arc inherited. Only the new operations
have t) be defined, so the extensibility can be performed without much programming overhead.

4, 2.2.1.1 The Smalltalk Environment

Smalltalk is a graphical, interactive programming environment. One key aspect of tie user interface of
Smalltalk is the use of a pointing device such as a mouse to select items instead of typing commands [50J.
Many of these ideas originated in the NLS system at Stanford Research Institute by Englcbart and others
during the late 19(s and early 1970s [491. Although NLS was used only within SRI, the system is now called
Augmen and marketed by Tymeshare corporation.

Smalltalk, unlike Augment. is intended to be implemented on self-contained personal computers which
include a single large address space and a disk. Unfortunately, implementations of Smalltalk on commercial
microcomputers have failed due to the performance problems of small processors and storage devices. One of

, -,., ,,, . , "' ".e .'.w , "," "J ., , "€"""""""","""" "',: ''".2 ''"2.'_''"2'.""". :'-2'' ''. .-. :''-.



22 PARTITIONING OF FUNCTION IN A DISTRIBUTED GRAPHICS SYSTEM

the few machines that can run Smalltalk with adequate performance is the Dorado, a very high-performance
and expensive scientific computer developed at Xerox PARC 1751. Workstations are becoming more
powerful, but machines in the class of the Dorado will be expensive for some time to come. Although using
the object-oriented approach of Smalltalk at all levels may not be desired, the user interface advances are
being adapted to other systems.

2.2.1.2 Smalltalk User Interface

The user interface of a Smalltalk system typically consists of several Views of objects on a gray background.
The name "window system" comes from the appearance that these views are "windows" into the world of
objects. The user controls a small arrow called a cursor by moving the pointing device. Directing activity to a
particular piece of information in a view is done by making a seleclion. The system provides immediate visual
feedback to indicate the selection. For example, the selection is often displayed complemented (black to
white and white to black). At any particular time, only one view is selected, indicated by a coriplemented
title, and appearing to lie on top of any other overlapping views.

Pop-up Menus are also used to select commands. In response to a user action such as a button press, a list of
commands appears underneath the cursor. While the button is held down, the cursor is moved to select one
of the commands in the menu. When the button is released, the selected command is carried out. Some
command menus are particular to the object being displayed in the selected view, while other command
menus are uniform across the entire system. Similar powerful user interfaces have been incorporated into
other object-oriented single language integrated environments, such as on the New Window System for the
Symbolics Lisp Machine, through a language extension called Flavors that provides objects with inheritance
of operations from multiple super-classes [1571.

2.2.2 "Lisa Technology"

The Star word processing system by Xerox corporation 11241 incorporated many of these object-oriented
ideas into a commercial product using the fairly conventional programming language Mesa [871. 'lMe Star
system used an analogy between the graphics screen and a conventional desk top. 'The screen contained icons,
small symbolic images that invoked actions when selected by the inouse. For example, moving a document to
a filing cabinet icon caused it to be stored in a file server, while moving it to a printer icon caused it to be
printed. The Star developers claimed that interfaces using icons were easier to learn and less error-prone than
conventional textual command languages.

The Cedar Viewers System [921 was developed at the Xerox Computer Science I aboratory for their
prototype software development environment called Cedar [46, 1401. lie Cedar environment was intended
to combine the best features of Interl.isp. in particular the Programmer's Assistant [1391. with the Mesa
program development environment [991. The application program specified procedures to be called in
response to input events. 'lliesc procedures used'the Cedar Graphics Plackage to draw the objects they
represent on the sLreen when requested 11541.

Unfortunately the Star system suffered from slow response times, and the Cedar system required very
expensive computers such as the I)orado to run cffeclively. Similar user interface finctionality was made
available for much lower cost with the introduction of the Apple L.isa and Macintosh computer systems [159].
'lie Lisa and Macintosh software borrowed the desk top metaphor from Star, with icons representing data
objects such as documents. Since these machines were the first to gain widespread attention, such systems
have been called examples of lisa Technology". Lisa was intended as a low-cost office personal computer,
so its perfonnance was also fairly slow, with some operations taking 30 seconds. This was due, for example, to
swapping of several megabytes of object code into a physical memory that was only expandable to one
megabyte.
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2.2.3 Other Window Systems

An important research effort has been the Canvas system [131, and its successor, called Sapphire, developed
at Carnegie-Mellon University for the Spice project. Sapphire (Screen Allocation Package Providing Helpful

- Icons and Rectangular Environncnts) provides a virtual bitmap which applications can manipulate any way
" they wish [95]. Applications can specify exact location and shape of the windows, or be notified when location

and shape is changed. Each window can be transparent, or can take responsibility for remembering what it
- obscures. For example, pop-up menus are implemented as windows.

Some of the user interface ideas of objcct-oriented window systems have been implemented on traditional
text-only [158, 651 or vector display terminals [89], although a full bitmap display is desirable, and becoming
more prevalent, especially in research environments[231. More important is the requirement of shared
memory for the many procedure calls in this approach. Some systems have extended the up-call concept with
remote procedure calls, with inconclusive performance results [59].

2.3 Virtual Terminal Management Systems
'.4

As we have seen in the last two Sections, graphics packages put the application in control, while object-
oriented window systems put the user in control. This distinction between main-stream standardization
efforts and the window system line of development has only been touched upon in the literature. Partly this is
because of the delay involved in standardization efforts; the current standards were designed for hardware of
more than ten years ago. Since the workstation-based distributed systems described in Chapter I did not exist
ten years ago, these standards do not easily lend themselves to a distributed environment 191.

One of the few efforts to combine these two lines of development was a window system for a storage tube
display [115]. 1he basic observation from this work was dat the advantages of the two approaches can be
combined if the problem is viewed as one of resource management. Since a major role of an operating system
is to manage hardware resources, recent research in resource management by operating systems, in particular
the management of terminal systems, should be examined.

2.3.1 Network Virtual Terminals

The name *virtual terminal" was first used during the development of protocols for long-haul networks
[431. Problems arose due to the large number of different operating systems and terminals that needed to

communicate in the network. If there were n types of terminals and in types of operating systems, then n x m
terminal handlers were needed. This led to very large software costs as networks diversified.

Instead of forcing each computer system to handle all possible types of terminals, each could handle only
one absiractly-defined neiwork virtual ienninaL The conversion from virtual to real terminal would be
performed by the machine to which the terminal directly connects. This is similar to the virtual device
approach descrihed in the previous section, also use6 to provide device independence. As workstations
become inore powcrful. they can be considered as nodes in a network. aid the virtual to physical terminal
translation could be performed by workstations.

2.3.2 Rochester's Intelligent Gateway VTMS

Another advantage of the virtual terminal concept is the support of multiple applications simultaneously.
Traditional graphics packages described in the first section of this chapter assume one application is in total
control at any time. Although the window systems discussed in the previous section display multiple contexts,
usually only one application is active at any time on the personal computer. One of the first attempts to use

a
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multiple concurrent processes in multiple windows for program development was a system called
Copilot [136]. The ability to monitor concurrency naturally through a window system has been determined
by the author to be invaluable in a distributed environmenL

Rochester's Intelligent Gateway was designed to provide a uniform user interface to manage distributed
resources [78, 791. The RIG Virtual Terminal Management System (VIMS), was one of the earliest systems to
provide simultaneous access to multiple, possibly distributed applications [771. VTMS mapped any number
of virtual terminals to a physical screen simultaneously, and each virtual terminal could be written to or
queried for input by applications throughout the distributed system.

In RIG the resource management problem was viewed fundamentally as a problem of process
management, with requests sent to server processes through messages. Table-driven command interpreters
were also provided to enforce a consistent user interface across different tools. These contributions
significantly influenced many subsequent efforts, including the research described in this thesis. However,i,-. VMS did not provide graphics support, nor did it provide effective terminal emulation.

2.3.3 Apollo Domain

The Apollo Domain workstation-based distributed system uses some of the concepts of virtual terminals as
developed in VTMS [81. Domain also provides a distributed file system, and other distributed objects.
However, its architecture applies to only one particular manufacturer since the network transparency is
handled at a very low level: demand paged virtual memory. Since most research computing environment are
very heterogeneous, Domain cannot be used to solve all partitioning problems [37].

2.3.4 The Virtual Graphics Terminal Service

The extension of the virtual terminal concept to graphics is the subject of the next two chapters. The system
described here is called the Virtual Graphics Terminal Service, or VGIS 2, the name reflecting the VTMS
conceptual base 1811. The VG'IS takes an approach different from I)omain's, handling transparency at a
much higher level: abstract operations. 'Ibis allows operations to be partitioned between machines of very
diffierent architectures running different operating systems, and using vastly different network technology.

-e e VG'I'S interface to the programmer is much simpler than most of the systems discussed in this chapter.
For example, the NGS working design document 1251 has a partial list of 181 functions, while the VGTS
programnner's interface is about 30 functions. Of course these other systems may provide more functionality
in some areas, but it is not clear that this functionality is always necessary.

The next two chapters will provide more details on the architecture and implementation of the VGTS,
including more comparisons to both standards and window systems. Chapter 5 will examine these types of
design trade-offs in depth.

2Pronounccd "We Gee Tee Ism". that is. there is no atlcmpt at pronunciation ofrthe acronym.
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-3-
A rchitectu re of the VGTS

As we have seen in he last two chapters. the functional partitioning problem is an important one that is not
adequately addressed by either traditional graphics packages or window systems. In order to perform
experiments on tie partition of function we have first designed an architecture for a distributed graphics
system, as described in this chapter. Only the architecture is described here; an actual implementation is
described in Chapter 4 and rationale for the design is given in Chapter 5.

3.1 The Environment

No single design will be appropriate for every circumstance. It is important to limit the scope of the
anticipated environment because most systems that try to do everything for everybody, end up not doing
much we'l at all. Tis section describes die particular environment for which the VG'S was designed.

3.1.1 The Stanford University Network

The VGTS architecture was designed within the context of the Stanford University Network (SUN). SUN is
a rapidly evolving environment consisting of:

o graphics workstations, such as the Xerox 1100, Symbolics 3600, SUN [151 and IRIS [391;

o sta-idard timesharing systems, such as Dr-cSystem-20/Tors-20, VAX/UNIX, and VAX/VMS; and

o dedicated server machines, for high quality and high volume printing, file storage, terminal
multiplexing, and gateway services;

interconnected by various local networks, including about 25 different Ethernet segments [941. Various
machines are also connected to long-haul networks such as the ARPANI' either directly or through gateways.
This fits the general model illustrated in Figure 1-1.

SUN is representative of many workstiaion-based disiributed syslems currently in place or being developed
throughout the computer research community (14. 119]. 'hese systems typically provide the equivalent of:

" powerful workstations with:

o a general-purpose processor (I MIPS or more)
o a large local physical memory (I MByte or more)
o a high-resolution raster display (1000 by 1000 or more pixels)
o a large virtual address space (> 20 bit)
o i graphics input device (sulch its a nousc)
o an optional disk

each usually dedicated to a single user at a time;

" a fast (> 1 MHz) communications network that will link the workstations;

" a number of dedicated processors providing printing, file storage, general computation support,
and other services; and access to timesharing or special-purpose computers and to long-haul
computer networks.

The architecture we arc about to describe is well-suited to any such system,

.... .. .. .. .. .. .. .. .. .. . ...-. .-...
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3.1.2 The V-System

The software environment used for this research is called the V-System. Logically it consists of a
distributed kernel and a distributcd set of server processes. Thc distributed kernel consists of the collection of
kernels resident on the participating machines. Communication within a single graphics workstation is via
fixed-size synchronous messages, using the V kernel [31, 32]. These message semantics were originally
developed in the Thoth 129] system and latei used in Verex [30]. The individual kernels are integrated via a
low-overhead inter-kernel protocol (IKP) that supports transparent interprocess communication between
machines over a local network [1641.

Servers include network servers, storage servers, executives (command interpreters), and, of course, virtual
graphics terminal servers.3 The V-System software architecture is especially tailored to communicate with
existing timesharing operating systems such as Unix, VMS, and ''OIs-20. A user-level program called the -V
server" runs on the timesharing machines and implements the V inter-kernel protocol. Programs running
within the V environment can then access file service or remote execution of programs transparently on the
timesharing hosts as well as the workstation. Other protocol architectures like IP/TCP [106] and PUP [19] are
also used to communicate with dedicated servers and larger or more remote time-sharing machines.

The V-System architecture was designed to allow flexible interconnection, similar in nature to hardware
organizations. Consider an operating system kernel as a bus, which provides a standard interface to connect
modules. In computer hardware, the bus is usually a simple, passive device. The V-System takes into account
multiple busses in both its hardware, as seen in Figure 3-1, and its software, as seen in Figure 3-2 [801. The
striking similarities between the hardware and software organizations are intentional. Note that busses
correspond to either operating system kernels (usually small and synchronous) or network protocols (larger
and asynchronous). Hardware modules correspond to software processes in this analogy.

Disk Drives. Tape Drives

Massbus

SUNs u 0000 Iis1/2y
PProcessor

Uness Memoryu

'II

on--es I ,-I I Idpe

Adaptner

Figure 3-Y: lardware organizaion of the Stanford V-System

Bus adapters correspond to network server processes, which can also be considered protocol converters.
One major reason for hardware bus adapters is the availability of many peripheral devices for certain old
busses. The adapter allows the use of the old peripherals on new systems, without the need to redesign all the

3We will refer to both the service and the server as VGIS, The Litter is the software module that provides the fomer.
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interfaces. Similarly, much software for older operating systems can be encapsulated and augmented in this
model, instead of being replaced.

3.1.3 The VGTS

in the V-system, thc workstation provides a virtual terminal service, similar to the VTIMS in RIG [78], but
extended to include graphics. Tlhe VG'I'S acts as a multiplexor, handling requests from c~ients to edit data
structures representing graphical objects. It then uses a real terminal protocol to actually draw the objects on
the screen.

The following arc some attributes of" the VG'I'S which distinguish it from related work:
The VGTS model is declarative rather than procedural. Instead of describing how to draw a

picture, the application deribes what is to be drawn. the user then specifies where the picture
should be displayed. hus, users control physical terminals, while applications control virtual
terminals.

* Objects can be constru~cted with hierarchical structure. An object catn consist of primitives or callsto other objects, which canin pturn e defined in terms of other symblols. Ihis is in contrast to
systenms like U KS' that allow only one level of'.strtrcl' (usually caled segment~s).

T he VGlTS supports true dcvice indepen|dent al)plicatlionS. TIhere is a standard high-level
interface, called the Virtual Grgrhics l'erminh Protocol (VG'II) letween a Vre l'S and its clients.
I)ileprnt terminal drivers exist for each real terminal, with rte VG'IS handling all the details of
the real graphics protocol.

The loig arismelnatibnanuites rae arS whchdtingui t freom" relatiey hiwprk: nnn

devices. This contrasts witll most of the object-oriented window systems that arc tailored toa
specific machine or language environment.

* The VG'S supports distributed clients. Applications can run on the same workstation as the
VG TS, on another workstation, or on some large computation server. Since he commlunication is

specific machi e or l n .u g.- --. - - .I
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at a high level, the different machines may have vastly different architectures. If the application is
written in a suitable high-level language, the same source code is used in any location.

* A single user can access several different applications simultaneously. The user can switch
contexts between these applications quickly and easily. Because of the ease with which

|-" applications can be distributed (the previous point), they can be using the local workstation or
remote computing servers at the same time.

These last two aspects are the major influence of the distributed heterogeneous environment on the VGTS.
Timesharing is effective when many users must share a computing resource; since current trends indicate that

*the user is quickly becoming the most important resource, we can extrapolate the philosophy that users are
more important than machines, and have one user being served by several different computing resources.

3.2 The User Model

In the modern distributed system environment, we require access to a variety of applications, distributed
literally throughout the world. We would like to take advantage of the power of advanced workstations to
provide a high-quality user interface to these resources. 1'he ideal interface must take into account four
fundamental principles:

1. The interface to application programs should be independent of particular physical devices or
intervening networks.

2. The user should be allowed to perform multiple tasks simultaneously.

3. The corrmmand interaction discipline should be consistent and natural.

4. Response to user interaction should be fasL

The first principle has led to work in virtual terminals and device-independent graphics packages; the
second to work in window systems: and the third to work in what has recently been called user interface
management systems [143], the most common examples of which are command languages. Without adhering
to the fourth principle, however, much of the other work is moot. Ideally, human users should never have to
wait for the computers: the computers should wait for the user. In a distributed environment, in particular,
the supporting network protocols cannot incur inordinate overhead.

3.2.1 The Ideal

In view of these principles, consider the following user model. When users boot a workstation they
communicate with a view mnanager4, which allows users to authenticate themselves and initiate one or more
aclivitics. "lIh,- activities may rn local to the workstation or remote. They may be written with the particular
workstation in nitd, or run in "terminal emulation" mode. They may require I/O modalities other than
traditional one-dimensional tcxI: graphics or audio. for example.

Each activity may be associated with one or more separate, device-independent virtual terminals (V'I). A
V I may be created by the user or by the activity itself. Each VT may be used to emulate a different type of'ft.

-i real terminal, for example, a page-mode VI-100 or a 3-13 graphics terminal. Thus, while consistency is
encouraged, the user is still able to access all resources to whidi he previously had access.

Unfortunately many similar systems refcr to this component as the window manger, even though this Ls incorrect with respect to most
terminology.
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When users wish to initiate a new activity, they must first create a new executive. l'he executive acts as a
command interpreter from which desired activities may be initiated. Users can create a new executive, with
an associated VT, or terminate an existing activity and VT at any time, that is, totally asynchronous to any
other activities. When a particular activity requires additional virtual terminals, it is free to create them.
These Vi's will be deallocated when the activity terminates.

Virul terminals are mapped to the screen when and where the user desires. In fact, multiple screens are
intentionally allowed by the architecture, since in many applications color or gray-scale is desired, but high
resolution color monitors are expensive. Thus a workstation may have, for example, one low resolution color
monitor and one high resolution monochrome monitor. Fach mapping ofa ViT to the screen is termed a view.
When an activity creates a new VT, it prompts the user to specify the default view interactively, or the view
manager cleates the view automatically, depending on user preference for screen layout. Thereafter, users
may create as many additional views as they wish. They may manipulate views of the same VT independent
of all other views of that VT, for example, to pan or zoom the view.

'he interaction discipline across VTs (and hence activities) is as consistent and natural as possible. The
mechanisms for moving between VTs and reorganizing the screen are standardized in the view manager.
Standard editing facilities permit the user to copy text or graphics from one VT to another. A standard
command interpreter enforces consistent command interpretation across applications. A variety of
information presentation facilities arc provided to allow the user to view and manipulate data as desircd. In
fact, different representations of the same data should be viewable with different formats, such as bar charts
of data contained in columns of numbers.

Ultimately. the executive mentioned above could evolve into an intelligent agent that manages the user's
distributecd resources in much the same way a traditional command language interpreter manages a single
system's resources [78]. Then and only then would the user be totally unaware of where the activities are
actually being executed - local to the workstation, on remote hosts, or distributed dynamically between some
combination of workstations and hosts.

3.2.2 Reality

This thesis focuses on virtual terminal management issues, with particular emphasis on distributed graphics.
The resulting workstation software will be relbrred to as the Virtual Graphics Terminal Service (VGTS).
Below we will consistently use the term virtual graphics terminal (VGT) in place of virtual terinal to
distinguish it from more traditional work in network virtual terminals and window systems described in the
previous chapter. The VGSTS contains both a graphics package and a window system, as modules in the
implementation to be described in Chapter 4.

Although we have not solved all the problems of command interaction, simply in order to manipulate the
screen we have developed a reasonable command interface - for creating, destroying, and rearranging VGTs;
managing executives: zoom ing, etc. In addition, many of the common command interaction techniques, such
al menus aid forn1s, require graphical support, which the VGTS is can provide. In short, the VGTS provides
the ficilities necessary to experiment with a variety of dinllrent command interfaces. 'l'his distinction between
terminal management and command interfaces follows from previous work and is consistent with the recent
trend towards user interface management systems [78, 143]. The rest of this chapter describes the VGTS
architecture in detail.
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3.3 The NetworkGraphics Architecture

The VGTS, as the rest of the V-System, fits the classic object or server model of software
architecture [67, 155]: Thc world consists of a collection of resources accessible by clients and managed by
servers. We will use the term client to refer to any entity (a human user or program) requesting access to a
resource. We will use dhe term user to refer exclusively to humans. Architecturally. wc make few assumptions
as to how servers are implemented - as monitors or proccsses, for example. The current implementation is in
the fonn of the message-based V-System, where servers are, in fact, processes.

For the purpose of terminal interaction, the principal resource is the worksuation, the server is the VGTS,
and clients consist of the user and application programs. Figure 3-3 presents the interrelationships among
these components. Following the traditional virtual terminal model, applications communicate with the
VGTS via the terminal-independent virtual graphics tenninal protocol (VGTP). and with host software in
whatever way necessary. The VGTS communicates with the hardware via the tcrminal-dependent real
terminal protocol (RTP). Thus, the VGTS provides a protocol translation service between VGTP and RP.
Alternatively, the VGTP defines the interface or semantics of the VGTS.

Application

Workstation Virtual Graphics

Terminal Protocol

Real Terminal

potxool VGTS Application
-il

)" 16 VGTP

SVGTP
"'.. ,,mnmmm

Application

21A User Other Services

Figure 3-3: High-level VGTS architecture

In terms of the ISO Reference Model for computer networking l1631, the VG'I is a presentation level
protocol. Naturally. when used across a network, the V('IP must be encapsulated in appropriate session and
transport protocols. We refer to the former as the network graphics prolocol(NG 11). described in Section 3.5.

In terms of traditional graphics terminology, the VGTP is the graphics language and the VGTS implements
the graphics package. Together, they offer similar functionality to a number of existing graphics systems,

.n' including those con forming to the ISO standard Graphical Kernel System (G KS) 1641 and the proposed Core
sta ndard 11471 as discussed in chapter 2. The VGTP hears anoi even grea er resenblanlce to the proposed PIIIGS
standard 141. which was developed at approximately the same time. The R'II, on the other hand, could easily
be the proposed ANSI Virtual ICvice Interface (VI)I1221 or the North American Presentation Level

- *~ Protocol Syntax (NAPLPS) [61.
S'2.

-' 4-
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3.4 The Virtual Graphics Terminal Protocol

The VGTS has two very different protocol interfaces: one to the user and one to the client application
program. First we will discuss in detail the protocol used between the VGTS and its clients, refcrred to as the
VGTP in Figure 3-3. Instead of standardizing on a byte-stream or procedural interface, the VGTP was first
specified as kinds of objects and a set of operations on those objects. This section describes these abstract
operations. and the next chapter discusscs how the operations arc actually implemented. Figure 3-4 illustrates
the relationships between the objects discussed in this section. The next chapter will contain a concrete
example in Figure 4-2 to firthcr explain these concepts.

Application Application

SDF
Item: Symbol Item: Symbol

Item: Primitive Item: Primitive

Item: Call Item: Primitive

Item: Primitive Item: Primitive

SVGT VGT

t lent

View View View
viewport viewport Vlewporl

Depth Dpth Depth

Window Window Window

~User
6.

Figure 3-4: Relationship of SI)F's, VGTs, and Views

'lie VGITS provides two basic types of structures: structured display files (SI)F) and virtual graphics
terminals. Every graphical object is defined within a specific SI)F: thus, an SI)F rcpresents an object
definition space. In order to view an object, it is necessary. first, to associate the object's SI)F definition with
a VGT (by the program) and, second, to :pccify a mapping of the VGT to the screen (by the user).

3.4.1 SDFs and their Manipulation

An SI)F consists of a collection of in s. The items can be either primitives, or grouped into symbols, which
g can in turn be contained in ilnstLlnces of other symbols, to any desired depth. The SI)F forms a directed

acyclic graph (I)AG), with items as nodes of the )AG. Abstractly, symbol definition nodes have arcs to all
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their component items. Symbol call nodes have arcs to the symbol definition node, and primitive items
correspond to leaf nodes.

An SIF is similar to a segment network in PluGS, while an item is equivalent to an element [4]. An SDF
may also be thought of as a symbol sysiemn [56). Items arc named by identifiers chosen by the application, are
typed, and have type-dependent attributes. The ranges of these identifiers and attributes will be discussed in
Section 4.3. Item types include:

* line
* (filled) rectangle
e (filled) polygon

* . bitmap
* text (in arbitrary fonts)
9 (filled) spline
• symbol definition
* symbol call

All items are defined within a 2 dimensional integer world coordinate space. Translation is the only modeling
transformation permitted on "called" symbols. All other transformations, such as rotation or projection from
higher dimensions, are presently handled by the application program. Attributes are specified as indices into
type-specific aitribute tables similar to the bundled attributes of GKS. However, these attribute tables are
shared by all VGTs and managed by the VGTS in its role as mediator between simultaneous applications. In
contrast, ( KS allows the single application to control the bundle tables. VGTS attributes are specified (at

V]. least indirectly) on each item, not inherited from calling symbols, as they are in PIIIGS, for example, or set by
modes.

A client can create and delete structured display files, symbols, or items. It may edit symbols, and obtain or
change the properties of an item. The following functions are provided to manipulate the SDF:

N, CreateSDFO =)sdf
Create a structured display file, and return its identifier in sdf This must be done before any symbols
are dcfined.

DeeteSDF(sd)
Return all the items defined in the given sdfto free storage.

DefineSymbol (df ilen, namne)
Enter a symbol into the symbol table, and open it for editing. The sdf is one returned from a previous
CreateSDFcall. item is an application-specific integer identifier for the symbol and iamne is an optional
string name.

EndSymbol (sdf. item. vg)
Close symbol item in sdfso no more items can be changed, and cause the vgt to be redrawn to reflect the
new sj: Called at die end of a list of items defining a symbol, started with CreateSymnol or
IditSynboL

EditSymbol(sdf item)
Open existing symbol item in sdf for modification. This has the effect of calling DefineSymbol and
inscrting all the already existing entries to the definitions lisL 'lie editing process is ended in the same
way as the initial definition process: a call to EndSymboL

DeleteS.Ynbol(sdf item)
Delete the definition of symbol item from sdf Any dangling instances of this symbol, created by
AddCall. will remain, but will contain nothing.

P, IN.'
. "
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AddCall(sdf item, offset, calledSymbol)
Add an instance of calledSymbol to the currently open symbol in the sdf The instance is given the
name item. The called symbol's origin will be placed at offset in the calling symbol's coordinate space; it
is not windowed or transformed in any other way. This is equivalent to a move call unit in Sproull and
'1homas's structured format protocol [1261. or an Execute call in NGS, as opposed to a Copy call. That
is, changing the symbol definition changes all instances. This is more like a subroutine call than a macro
expansion.

Addlten (sdf item. extent. type. attributes. typeData)
Add an item to the currently open symbol in the sdf giving it the name item. extent specifies the
bounding box of the item in its coordinate space. type and attribute determine the type and attributes
respectively. t'pcl)ata contains any other data needed to define the item, such as the control points for
a spline item or the text string for a text item.

Deleteltem (sdf item)
l)elete item from the currently open symbol definition in sdf

Inquireltenm (sdf. item) =) extent. type. attributes, tvpeData
Return the parameters for item in sdf

InquireCall (sdf item) =) calledSymbol
Return the item name, calledSymnbol, of the symbol called by the item in sdf

Changeltein (sdf item. extent, type, attribute, type Data)
Change the parameters of an already existing item in sdf This is equivalent to deleting an item and then
reinserting it, so the item must be part of the open symbol.

3.4.2 VGT and View Management

Once the VGI'S client has defined some graphical objects, the client or the user needs to provide
infonnation on how the objects should appear. The VG'S lets a user see objects in any VGT anywhere on
the screen in views. Each view has a zooin factor, a window on the world coordinates of the VGT. and screen
coordinates which determine its vicwport. Thus, a view defines a particular viewing transformation directly
from world to device coordinate space. No interniediate transformations, such as normalized device
coordinates, are visible to the client.

Although the client can create default views, the user can change them with the view manager, and create
and destroy more of them. Ia.-ch VGT can exist in zero or more views, but each view has exactly one VGT
associated with it. tach VGT is associated with at most one SIF, but each SIF may be associated with L

several VGTs. Symbol definitions are shared between VGl's that have the same Sl)F. Thus one VGT can
display at its top level a symbol that appears as a called instance at a lower level in some other symbol in
another VGT. 

Functions (br clients' manil)ulation of VG's and views include:

Create VGT(ype. name. sdf itein) -) vgt
Create a VGT of type type and return its identifier in vgt. name is a client-specified symbolic name for
the VGT that may be used later to select that VGT for input. item in sdfis placed as the top-level item I%
in the VGTl: it can be .ero to indicate an initially blank VGT. The type can be some combination of
Text, Graphics, and Zoonmable.

Destroy VGT (gt)
I)estroy the given vgt and all the associated views.

El
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DefaultView (vgi, width. height. wXmin, wYnin zoomi, showGrid) =) width, height
Create a view of the given display, with the user determining the position on the screen with the
graphical input device. width and height give the initial size of the view: non-positive values indicate
that the user should determine the size dynamically, in which case the selected values arc returned.
wXmin and wYmin are the world coordinates to map to the left bottom corner of the viewport: the
amount of the world actually viewed depends on the size of the viewport and the zoom factor. The
zoom factor is the power of two to multiply world coordinates to get screen coordinates; it may be
negative, to denote that a view is zoomed out. Views are not otherwise transformed. If showGrid is set,
a grid of points is displayed in the viewport.

To display a new graphical object in a VGT after the VGT is created, either the old top symbol can be
edited, or a new symbol can be defined and the following function called:

Displayltem (vgt. sdf item)
Change the top-level item in vgl to be item in sdf The new item is displayed in every view of the VGT.

DefaultView executes an implicit Displayltem after creating the view. EndSymbol may also cause output to
appear after (re)defining a symbol, although the VG°I'S redraws only the part of the view that has changed in
this case. 'he VGTS implementation is also free to perform other optimizations, such as only drawing the
additional items if the only changes before an EndSynbol are adding top-level primitives. Using these
functions, the VGTS client can achieve the effect of deferral modes for graphical output, including:

batch Construct the graphical object in its entirety and then display it, by executing a
DefineSymbol or EditSymboL many AddItem calls, followed by an EndSymbol call. This
corresponds to creating an invisible segment and making it visible, or using the At Some
Time deferral mode in GKS.

incremental Construct and display the object "on the fly", that is, display each primitive item (each
vector, for example) as it is added to the object, by repeatedly executing an Edi1SymnboL
Addlient EndSymbolscquence. This corresponds to creating a visible segment, using the As
Soon As Possible deferral mode in GKS.

*The latter approach may achieve better response, and is the normal mode of operation for most traditional
graphics systems. HIowever, as results will show, the former method usually achieves higher throughput, and
is the norm for programs using the VG'I'S.

3.4.3 Input Event Management

Since the VGTS was designed to support multiple simultaneous clients, it must decide which client receives
which input events. This is called input demultiplexing. and naturally occurs on a VGT basis. 'llie following
finctions are available for graphical input:

GetEvent (vgt. evcnaAhsk) > eaentl)e.criptor
Wait for an input event to occur with respect to tie indicated vgt and return a variant record in
eventDescriptor that describes the event. The record will contain the type of the event and the relevant
type-dependent information. eventMask specifies the acceptable types of input events: keyboard or
mouse. 'lhe mouse events subsume button and locator devices of GKS, returning the buttons pressed
and the location in virtual coordinates within the vgt. The first event in any of the indicated classes to
occur is returned.

FindSelectedObject (evenlDescriptor. search Type) =) item. edgeSel
Given an event descriptor as returned by GetEvent. return the item of the smallest object near the
event, and a set of (I eft, Right, Top. Bottom) edges which the event was near.
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GetGmphicsStatus (vgi) = ) status
Return the status of the graphical input device with respect to the indicated vgl including buttons
pressed and location. As a side cffect, the event queue is cleared of any outstanding graphical events.

PopUp (nenu) = > selection
Display a menu of choices at the cursor position, consisting of an array of strings, to the user. When the
uscr selects a particular item, retun the array index in selection. This is similar to the GKS choice
device.

GetEvent and GetGraphicsSratus together provide the functionality of the GKS input modes. The VGTS
maintains an event queue for each VGT: all keyboard and mouse events related to that VGT are queued in the
same queue, in First-In-First-Out order. Thus the event mode of GKS is supported for both the keyboard
and mouse through GetEvent. Pick device functionality is obtained from the indSelectedObject function,
which is similar to request mode of GKS. GetGraphicsStatus allows the mouse to operate in sample mode.
Sampling of the keyboard is not supported, since such a capability would be quite device dependent.

Keybo.,rd input is always associated with some VG' group. Each VGT belongs to exactly one group, and a
group typically corresponds to an activity (although an activity can create multiple groups). T7he groups are
identified by their master, which receives keyboard input when the group is selected through the user
interface. The next section describes the textual output interface, provided so the simple symmetric model of
standard tcrminals can be used for echoing keyboard input.

3.4.4 Text Terminal Emulation

The VTS supports a text VGT mode optimized for page-mode terminal emulation. Specifically, an
application may treat a VGT as a standard ANSI terminal [I]. such as a DEC Vl'-100. Such an application
need not know anything about the graphical facilities of the VGTP, and may use the ANSI terminal protocol
to communicate with the VGTS. including escape sequences for cursor control. Output to the VG' is stored
in a pad1771, which is a symbol within an SDF. The symbol consists of a linear array of simple text items,

", each of which represents one line.

" Note that the terminal emulation output interface is of a different nature firom (and therefore,
unfortumntely, incompatible with) the graphics interface as discussed above. I lowever, this does not prevent a
mixed text and graphics application. One particular type of graphics item is text, permitting a client to easily
integrate text and graphics within a graphics VG'. The terminal emulator interface is provided to optimize
performance for a typical special case.

The VGTS architecture provides several advanced features for the support of keyboard input processing.
Applications can operate in "raw" mode, or selectively enable any of the following features:

I ocal Fcho This allows instant response to keyboard input, providing useful feedback to users of
potentially loaded timesharing systems.

Line Editing Programs that interact on a line-by-line basis, such as the executive, can cause lines to be
buffered (and usually echoed) inside the VGl'S. Sophisticated editing commands are
available on the line buffer, and the executive (for example) can "stuff" previous command
lines into the line buffer. in conjunction with its history mechanism.

Paged Output When this mode is in effect, the VGTS will block output requests larger than one page. A
message is displayed in the banner, and the user types a command to unblock when ready.

Graphics Escapes Inside a pad, when connected to some remote hosts through a TFNI. I' program, graphical
input events can send escape sequences back to the application. This allows many useful
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programs that deal with conventional terminals to be simply extended to take advantage of
graphical input capability without major redesigns of the applications. For example, an
EMACS [129] library can be loaded to bind these character strings to commands that
position the text cursor, set the EMACS mark, delete and insert text.

By default, keyboard input is line-buffered and echoed by the VGTS, with the powerful line-editor built in.
Support for text editing by a pointing device could be provided, transparently to applications. 'his has been
partially implemented in one user's custom version of the VOT'S.

3.5 The VGTS Client Protocols

The VG'I'P is constant over all applications, but allows for a wide variety of bindings to lower-level
protocols. Some applications have no knowledge of the VGTP and some applications are running on
machines that do not support the interprocess communication mechanisms underlying the VGTP. Whenever
the application is running remotely, the VGTP must be encapsulated within an appropriate network transport
protocol. The following situations arise (see Figure 3-5, in which each inter-machine arc is labeled with an
example (presentation protocol, transport protocol) pair):

VAX
SUN VLSI Layout

Compiler Editor

;-" ".SUN

voTP vGTP

IKP RTP/BSP

DEC-20

SText Editor LocalVA
Illustrator Distributed

Game
Dene CustomE

TCP NOP

Figure 3-5: Possible clients of the VGTS

* Application A runs on the workstation and communicates via V kernel messages. Current
examples include text editors, document illustrators, and design aids.

e Application B and the VG'IS run on two separate machines that support network-transparent
interproccss communication, such as the V-System inter-kernwl protocol (I K P), B communicates
with the VGIS via the VGIP, as in the case of a application A.
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* Application C runs on a machine that does not support network-transparent IPC, but does
support a traditional network architectfire. In addition, a VGTP interface package is available that
encapsulates the VGTP within the appropriate transport protocol. Similarly, a local agent for the
application, C' is created on the workstation to decapsulate the VGTP. Thus, the application may
still be written in terms of the VGTP and neither it nor the VGTS have any knowledge that the
other is remote. Our VLSI layout editor, for example, can be run in this fashion under
VAX/UNIX.

,* . Application D has no knowledge of the VGTS or the VGTP; it wishes to regard the workstation as
just another terminal. The local agent, D, is "user EILNLE1" and performs the appropriate
translations between TELNEr and VGTP.

* Application E is distributed between the workstation and one or more other machines. 'lhe local
agont. E' is responsible for communicating between the distributed parts of the application and
the VGTS. It must perform the appropriate set of protocol conversions indicated above. In
addition, it may wish to perform application-specific functions, such as high-level caching. In that
case, the protocol used to communicate with the remote applications may require more than
simple transport service.

All applications but A use a network transport protocol, whether they realize it or not. Application B
employs an interprocess communication protocol that has nothing to do with graphics per se. Application D
employs a protocol that in no way depends on knowledge of the VGTS and typically has nothing to do with
graphics: in order to run, an appropriate protocol-converter must run on the workstation.

Applications Cand E, on the other hand, know all about the VGTS and are very interested in graphics. We
will refer to the protocol they employ as the network graphics protocol (NGP). 'he NGP may be a simple

* encapsulation of the VGTP by an existing transport protocol, it may be a problem-oriented protocol [1171, or
it may itself be a multi-level protocol. Application C, for example, may find a direct encapsulation of the
VGTP acceptable. Application E, however, may wish to maintain a replicated database (the main database
plus the cache), or may wish to trade reliability against cost. In these cases, the NGP offers considerably more
functionality than mere encapsulation/decapsulation of the VGTP. In general, the VGTP and NGP
correspond roughly to presentation and session layer protocols, respectively, in the ISO reference model [163].

hle transport protocols used in the prototype implementation are discussed in Section 4.3.5.

3.6 Summary and Implications of the Architecture

This chapter presented a high-level virtual graphics terminal protocol that is the key element of the VGTS
architecture. This protocol is used by applications to specify graphical objects with hierarchical structure.
The use of standard protocols helps to provide device independence. Any application program which uses
the standard protocol can be used with any implementation of the VGTS. without any modifications. More
information about how this is achieved, and other details of the prototype implementation are given in the
next chapter. Chapter 5 discusses the rationale behind the design of both the architecture and the
implcmentation. including why the design Icilitates distribution and concurrency. As will Ie shown in the
Chapter 6. this protocol is successful in limiting both the I'fcquency Of communication between application
and VGTS and the amount of data transmitted at any one time.

hP
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-4-
An Implementation of the VGTS

The architecture described in the previous chapter is independent of any implementation. Programs
developed for one implementation of the VGTS should bc able to run with any other implementation, given
the existence of the appropriate transport protocols. In this chapter we will first describe the organi/.ation of
one particular prototype implementation. This implementation actually adapts itself at run-time to several
different varieties of workstations, and many modules can be used on other very difcrent workstations. The
techniques used in this implementation to update the screen are discussed, followed by the client interface,
and then the user interface. Finally. an example application program is described: a simple illustration
editor.

4.1 General Organization

As noted in Section 3.2, the VGTS is only one component of the user interface software in the V-System.
The other components are:

e the view manager
* the exec server
0 the executives
* the application library

The view manager provides the means by which users can create, destroy, and modify the screen layout, as
well as create new executives. Executives represent instances of the same basic commaad interpreter, as
defined by the exec server. To create a new executive, the user communicates \ith the view manager, which
communicates with the exec server. he user may replace the exec server at any time. effeztively redefining
the executive command interpreters. Logically, the view manager is another module that may be replaced.
Ultimately, however, these components employ the services of the VGTS to communicate with the user.

In fact, the VGTS is merely an instance of a terminal agent. Hence. the user may also replace the VGTS at
any time with simpler terminal agents, or other window systems. This facility permits a programmer to
develop new graphics facilities without having to constantly reboot his workstation. On the other hand, it
provides the mechanism by which the same user interface management system can communicate with a
substantially "reduced" terminal agent such as the simple terminal server (SIS), a subset of the VGTS
architecture which runs on a simple text-only terminal [171.

4.1.1 VGTS Implementation Modules

At one more level of detail, each terminal agent is composed of multiple components. In particular, the
VG'IS implementation consists ol'the following modules:

master multiplexor Handles all client requests by dispatching to the appropriate routine in other modules.
Provides synchronization between all the possible clients, by recciving messages from
them. The major part ol the operating system interface is contained in this module.

escape interpreter Monitors the incoming byte stream for graphics commands and calls the Sl)F
manager to perform them. Other characters are passed through to the terminal
emulator.

terminal emulator Interprets a byte stream as if it were an ANSI standard terminal [I]. Printable

V..
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" characters arc added to text objects, and control and escape codes are mapped into the
.:. proper VG'I'P operations.

SI)F manager Handles requests to create, destroy r and modify graphical objectl ited obructs
ndisplay files. Maxmns extents of symbols are lientained to help the redrawing

='" prt~m.. TIhis is ec,'tivcly (lie disphi)-fihe compih'r[27, 561. Included is a hash table
.- - manager to keep track of symbol definitions and item numbers.

tm.-..Si)F interpietr Highecst-lvl graphical output operations. 'IV structured display file is visited
". ' recursively, with appropriate clipping fo~r extents totally outside the area being drawn.
-'- his is effectively die display processing unil. In a hiigher- performance
"="',..implementation this module and the ones below it could be implemented in hardware.

A .

hit detection T-e structured display file is visited, but instead of actually drawing the primitives, the
,'. positions arc checked to match die cursor's position. A list of possibly selected objects
., .(under other option.Al constraints) is returned to die client.
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event handler Handles the event queues, line buffering, and the blocking and unblocking of clients
waiting on events.

view manager Provides the user interface for screen management. Although this is logically a fairly
separate entity from the lower-lcvcl functions of the VGTS, in the current
implementation it is provided as a module which runs as a coroutine to the master
multiplexor process.

view primitives Perform the view-changing operations. These are the operations invoked by the view
manager, such as creating, deleting, and modifying views.

* .i display manager Low-level but possibly device-independent operations, such as handling the
overlapping viewports. Although this module does not do any frame buffer
operations directly, it uses several device-dependent parameters, such as the size of the
screen in physical coordinates. Also, some of these operations could be done in
hardware on higher-performance graphics devices.

drawing manager Device-dependent graphics primitives called by the display manager. On the SUN
workstation, for example, these primitives manipulate the frame buffer. On other
lower-performance workstations this might be done by a separate process to prevent
the multiplexor process from blocking for long periods of time.

input handlers Device-dependent modules for reading the keyboard and tracking the mouse. There
is also a timer module to supply periodic messages to the multiplexor.

The relationships between these modules are illustrated in Figure 4-1. The general direction of control is
indicated by the direction of the arrows. The higher level modules near the top of the figure call lower level
modules near the bottom.

4.1.2 Team and Process Structure

"le V-System provided three techniques for structuring software: modules, processes, and teams.
Modules are groups of functions that communicate through function calls and global variables. The kernel
manages independent concurrent processes, which communicate through messages or shared memory. Only
processes on the same tcali share memory, separate teams are separate virtual address spaces. 'Ilie process
structure of the VGIS is also illustrated in Figure 4-1, by the presence of the thick arrows. The arrows are
drawn in the direction that messages are sent, from the sender to the receiver. The VGTS implementation
consists of four processes:

1. "lic keyboard helper process reads from the kernel console device and sends messages to the
master multiplexor.

2. Ilie mouse helper reads from the kernel mouse device and sends messages to the master
multiplexor.

3. 'Ibc timer helper delays for , set period and sends timing messages to the master multiplexor.
Several activities arc triggered by these messages, including a blanking of the screen after ten
minutes if no other messages have been received.

*,- 4. "I'he master multiplexor process synchronizes all frame buffer operations, and performs most of
the other functions.

Ihe low level interface to the console, mouse, and timer is implemented by the V kernel. Normal messages
are sent to a pscudo-proccss called the "device server" which will block until data is available. This blocking
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necessitates the three extra helper processes for these devices. The main loop of the VGwTS, like most servers
in the V-System, consists of a Receive primitive followed by a switch on the type of request. The main
process of the VGTS should never block for significant periods of time.

4.1.3 Module Sizes

The number of lines of source and the number of bytes for object code for each of the modules is given in
Table 4-1. The "Others" line refers to lines of code in the header files, and bytes obtained from libraries.
Note that about one third of the object code is obtained from libraries. Another interesting observation on
the relative sizes of modules is that the module that is largest in source and second largest in object code
(spline and polygon finctions) is very rarely used.

Source Size Object Size
Module (lines) (Bytes)
Display 442 3475
Splines and Polygons 1498 10068
SUN Drawing Manager 1423 8860
Event Handler 1150 6540
SDF Interpreter 638 6540
Escape Interpreter 594 5164
Input Handlers 427 2416
View Manager 1137 9920
Hit Detection 983 6024
Master Multiplexor 1045 8212
Terminal Emulator 896 6000
SDV Manager 1349 14240
View Primitives 1209 8676
Others 425 51059
Total 13283 140654

Table 4-1: VGTS implementation module sizes

4.1.4 Adaptive Techniques

The VGTS uses several techniques to adapt to its environment. First, several link-time versions are
available. In the fill configuration. the basic V-System services (such as the exec server, context prefix server,
team server, exception server. etc.), are provided by one team, which loads another team at initialization
consisting of the VGIS and a default view manager. The user can then issue a command to replace the entire
VGIS and view manager al run-timc. Since this capability is rarely used except by some VGTS developers.
another conliguration has the VGTS linked together with the basic services into a single team. The two-team
version takes longer to load, and occupies at least 50K bytes more of memory and another team descriptor.
FIinally. Ibr systems that are short of memory, a reduced function VGTS is available with no splines, polygons,
or font loading facilities.

The low-level VGTS device driver has to deal with subtle differences among the many versions of SUN
I* workstation hardware that have evolved over the years. Some differences are handled by the V kernel device

server, which provides virtual keyboard and mouse devices. Other parameters, such as the exact screen size
(which varies from 796 lines by 1024 pixels to 1024 lines by 800 pixels) and the virtual address of the frame
buler. are detennined at run-time with the aid of a kernel workstation query operation.

More changes were required to support an implementation of the VGTS for a later model of the SUN
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workstation, called the SUN-2. Initially the single installed VGTS would query the kernel on start-up to
determine tie type of frame buffer and set a variable. This variable was tested before each primitive to
detenriine which low-level graphics function to call. Although the run-time CPU overhead was acceptable,
the memory usage of the combined version eventually prompted the split into separate versions for the
SUN-I and SUN-2 frame buffers. Interestingly, the mere act of identifying device dependencies that had
crept into modules that were previously thought to be device dependent, resulted in cleaning up the
implementation and marginally decreased the size of the original SUN-I implementation.

Additional techniques could be used for adaptation in future implementations of the VGTS. For example,
if the V-System implemented virtual memory then the rarely-used modules could be page-faulted into
physical memory only when actually needed. l)ynamic linking could also be used to reduce the minimum
memory requirements, at the expense of slightly more complicated inter-module linkages. l)ynamic linking
would also require more complicated debugging tools, and possibly introduce reliability problems.

4.2 Screen Updating

This section discusses the techniques used for displaying objects, the end result of VGTS operations. In
contrast to many systems, the VGTS provides centralized rather than distributed control of screen updating.
The next chapter, and in particular Section 5.4, will discuss the rationale behind this decision in greater detail.
There are a fixed set of graphical primitives, executed under the control of the VGTS SI)F interpreter, display
manager, and drawing manager, the lowest level modules in Figure 4-1. This centralized control eliminates
any possibility of applications interfering with each other. In fact, operations on the SUN frame buffer
cannot b. interrupted and restarted, so some kind of synchronization is necessary. Moreover, centralized
control i the only reasonable approach for distributed applications. The user methods of object oriented
window systems discussed in Chapter 2 rely on shared memory, which is not typically available in a
distributed environment.

4.2.1 Implementing Overlapping Viewports

Originally. viewports were restricted to lie entirely on the screen and to not overlap. However, this proved
to be inidequate, since screen space quickly filled Lip, and viewport manipulation commands often failed.
mThe current implementation uses a novel scheme of dividing each viewport into visible non-overlapping

rectangles (called subviewports) whenever the screen layout changes. The viewports are redrawn by
interpreting the structured display file in each of the subviewporLs. [his has the advantage of no speed
penalty 1 6r updating views that are not obscured (the normal case). Views which have non-rectangular visible
portions may take longer to update for complicated SI)Fs, but almost always the actual drawing time is the
dominating [mtor, which is proportional to the area being redrawn and independent of the shape of the
region. The resulting scheme is clean and simple.

One imimor advantage over systems that mainlin obscured bitmaps (such as Apollo I)omain 181, lIlit
I ayers 110O51. mud Spice ian as 1131) is that no extra memory is required to store those obscured bitmaps. '[lle

SI)[ can represent extremely large objects in modest amounts of memory. As an example. consider the two
overlapping VicWports inl Figure 4-2. The SI)I data structures take up only a few hundred bytes, while the
bitmap could nced many thousands of bytes. View number I lies on top, and is entirely on tie screen, so it
has only one subicwport, numbcr 1. View number 2 is partially obscured, so it has two rectangular
subvieports, numbers 2 and 3. lhe "banners" or labels on the top of each view are implemented as
additional subviewports. each displaying a single item: a string name, VGT number, optional view number
and zoom factor, and a string controlled by the application.

Another advantage of updating from the SI)F instead of from a bitmap, is that it is often actually faster to
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Ftem 1:S bol, "Bike"

Item 2: Line (frame)

Item 0: Line (spoke)VG 1

Top Symbol: 1

Name: "Bike Editor"

Screen ~ vgt 1 view 1 ~w

(subviewport 1) View 1
Viewport

vqI 1 view 2Det

(subviewport 2)WidwVe 2

(subviewport 3)

Figure 4-2: Example of itern naming

rcdraw the picture from tic SDW than to restore thc bitmap, assuming that the bottleneck of" graphics is die
frame bulfer update bakidwidth. F'or exatmple. a picture composed of vectors usually has at low density of
pixels touched by tie vectors. For scrolling text, our expefiece has been that it is signiicantly fastcr to
redraw aI sitngle character otn the SUN-I than it is to scroll it by tmoving the bitmap. 'I'his is because moving

* uthe bitmal) touches cach hit of' (le fr-ame bu I16r twice (one rcad and oiie write), while redrawing touches it
* Only Once. TIhe sour-ce fo6r the redrawn character is main CPU memory. which is accessed more quickly thian
* frame buffer memory. Unfortunately, the SUN-2 framne huller was designed to optimize large raster
* ~~Opel tiOlls used itn the raster-orietited software marketed by SUN Microsystetms, instead of thc many small
d operationts done by the VG'IS. In other words, on dhe SUN-I frame buffer- the bottleneck wats the number of

bits per seccond that could be sent over the I/0 bus, while ott the SUN-2 the bottleneck is the number of raster
* operations per second. 'The result is that the SUN-2 frame buffer is slower than the SUN-i for all VOTS

drawing operations.
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*, 4.2.2 Zooming and Expansion

The VGTS provides support for zooming and expansion depth that is independent of its clients. Zooming
consists of redrawing the SDF with larger objects, not replicating pixels. Expansion depth, one of the
attributes of each view, indicates how far down in the S)I to go when displaying a symbol. If the expansion
depth is less than the SIt tree height, an outlined box will be displayed at the appropriate point in place of
the symbol. )epending on the size of the box, the text name of the symbol may al:,o be displayed. Views may
be zoomed and expanded independently such that a user may view an entire symbol in one view, for example,
while simultaneously viewing a piece of the symbol in a zoomed-in view.

4.3 Client Interface

Before the techniques described in the last section can be used t,) display objects, the objects must be
defined by some client application program. The abstract objects and operations were discussed in the
previous chapter, Section 3.4. The details of the C language binding for this interface are discussed in the
V-System Reference Manual, in the chapter on the graphics library functions [17]. This section discusses
some important design choices taken in the prototype VGTS implementation regarding the client interface.

4.3.1 Item Naming

" Items within an SDF are named with 16 bit identifiers chosen by the application. It is assumed that the
, application will maintain some higher-level data structures, along with the appropriate mapping to these
.- internal item names. The item names are global to each SDF, but applications may also have several SI)Fs

for different name spaces. Item identifier- are referenced via a hash table, so there are no constraints on their
values 1731. Items that will never be referenccd can be given item number zero, and are never introduced into
the hash table. In practice. only a few "interesting" items are actually given non-zero numbers. Item

-" numbers can refer to both definitions of symbols and their instances. Symbols are also given string names,
but these strings are only used for disambiguation during hit testing, or for displaying symbols at the
expansion depth. String names of symbols are not related to item numbers.

For example, a picture of a bicycle might define a symbol for a wheel. The item number of the top-level
"bike' symbol could be 1, with 2 and 3 referring to other parts of the symbol. The definition of the wheel
symbol is given item number 4- [here may then be two instances (calls) of item number 4, which could be
given item numbers 5 and 6. The individual spokes ol' the wheel are components of symbol number 4, but are

- all given item number 0, since we will never want to refer to any of them individually. If it is desired to delete
or move any individual spoke, then each of these items may also be given numbers. Figure 4-2 on page 44

-. illustrates this example.

A

4.3.2 Representing SDF Items

Section 3.4 introduced some of the kinds of item types used in the VGTS. 'llie implementation uses a
compact linked list of display records to represent these items internally. Fach item within an SIF has the

- following parameters:

Item A 16 bit unique (within the SI)F) identifier for this object, or zero. This identifier is
" referenced by the client when performing editing operations.

Type One of the predefined types described below: either a primitive type or one to indicate
structure. Currently eight bits are allocated to this.

.4
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K. Typcl)ata Eight bits of type-dependent information, such as the stipple pattern index for a filled
rectangle. Most attributes are storcd here, such as the font index for general text.

Xmin Minimum X coordinate of the extent. All coordinates are in "world" coordinates, stored as

signed 16 bit signed integers.

Xmax Maximum X coordinate of the extent.

Ymin Minimum Y coordinate of the extent.

Ymax Maximum Y coordinate of the extent.

Pointer Depending on the type, this is either a pointer to some data such as an ASCII text string, or
for symbol calls, a pointer to the called symbol.

Sibling All the component items within a symbol are linked together via this chain. This is a
circular chain, as illustrated in Figure 4-2. Normally this relationship should not be visible
to the client, unless the client wants to step through a symbol definition in order.

Some of the meanings of the above fields depend on the type of the item. The following are the types of
items that occur in structured display file records in the prototype implementation:

Filled Rectangle A rectangle filled with some texture. The TypeData field specifies the stipple pattern, or
color on the IRIS system.

Horizontal Line Horizontal line from (Xmin,Ymin) to (Xmax,Ymin). Ymax is ignored.

.4. Vertical line Vertical line from (Xmin,Ymin) to (Xmin.Ymax). Xmax is ignored.

Point A point, which usually appears as a 2 by 2 pixel square at (XminYmin).

Simple Text A simple text string, with (Xmin.Ymin) as its lower left corner. This produces text in a
single fixed-width font that can be drawn very quickly. The values of Xmax and Ymax
need not surround the text, but they are used as aids for redrawing, so should correspond
roughly to the real extent.

General Line A generalized line, from (Xmin.Ymin) to (Xmax,Ymax). Note that Xmin etc. are slightly
misleading names. The SIW manager actually sorts the endpoints and calculates the extent
correctly.

.4.

Outline Outline for a selected symbol. Xmin, Xmax, Ymin and Ymax give the box for the outline.
The Typel)ata field specifies bits to select each of the edges: L.eftF-dge, RightEdge,
'TopEdge or Bottoml-dge.

Text A string of general text, with a lower left corner at (Xmin,Ymin). The •l'ypcl)ata field
specifies the font number. Xmax is recalculated from the width information for the font.

Raster A general raster bitmap with a lower left corner at (Xmin.Ymin), and upper right corner at
(Xmax,Ymax). The Typcl)ata field determines if the raster is written with ones as black or
white. The pointer field points to the actual bitnap, in 16 bit-wide swaths.

Spline A spline object, optionally filled with a specified pattern. 'llie pointer field points to a
SPIINE structure.

Filled Polygon A list of points which defines a polygon that can be optionally filled with a specified
pattern.

U. . . , . . . -. - , -. . - • . , . .- -. .. ? . ,? ' - -- ., - -. . , -' , ,,
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Arcs A list of points defining a series of circular arcs. Although arcs can be very closely
approximated by splines, this provides a simpler interface and faster implementation.

There are a few other types that are not visible to the user. For example,.symbol definitions and calls are
represented as items with most of the same attributes.

4.3.3 Interface to V-System Protocols

The VGTS implements a subset of the standard V 1/O protocol [33]. Thus simple applications can write to
standard output and read from standard input, with no changes required when executing under the VG'IS,
under the simple terminal server, or with input or output redirected to any other file. Pads arc created by the
standard request to create a ile instance, and destroyed by the standard request to release a file instance.

The VGTS also implements some of the operations in the V distributed naming protocol [341. When the
standard directory listing program is used to list the directory of the context named vgts, information about
the currently defined virtual terminals will be print,.d. Thus each virtual terminal is a named V I/O object.

4.3.4 Binding the VGTP to a Byte Stream

The finctions described in section 3.4 are all encapsulated in escape sequences to form a byte stream using
a very simple protocol. Each call causes a special flag character to be sent (the ASCII character called US, octal
037) followed by a one-byte code indicating the function number. This is followed by each of the arguments
to the function, transmitted with the high-order byte first in each argument. Any return values are sent with
the same escape character followed by the bytes of the returned value, high-order byte first. Most parameters
arc sixteen bit unsigned integers, requiring two bytes for each value.

This results in a very small number of bytes for common operations. As we shall see in the next chapter,
this makes the protocol fairly insensitive to network speeds. A more ambitious project would have used an
automatic 'remote procedure call" generator 11021, but the manual method was sufficient for this project,
since the functional interface did not change very often. An automatic RPC mechanism should not affect the
performance of applications, and in fact should be entirely transparent.

4.3.5 NetworkTransport Protocols

The encapsulation of the VGTP within transport protocols is illustrated in Figure 4-3. Dashed lines
separate library packages, solid lines separate programs, and arrows indicate network protocols. All
interaction to die VG'IS is through the V Input/Output protocol (VIO), which provides a byte stream of data
in terms of V incsages. 'Ilie i n te rp module decodes graphical operations out of this byte stream, providing
the server side of the remote procedure call Cacilily. The terminal emulator is also provided as a simple VIO
byte stream interface. Clients use cither the VIO stream package, or the UNIX Std i o package. The stubs
module encodes graphical ii lirmation on the standard output channel and decodes responses from standard
input

For distributed applications, one of three network transport protocols can be uscds:

1. PUP Tl.N- [191

5lioth i' Nur protocols are used as "transport" by remote VGTS clients, even though they are usually trealed as presentation-level in
the ISO hierarchy .hc distinction is in name only.

.. .......... .... ...... .................................................................... ... ...
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Figure 4-3: Encapsulation of the Virtual Graphics'Terminal Protocol

2. lntcrnctTIi'irr [1107]

3. V-Systcmn lntcr-Kcrncl Protocol [31]

Tccarc standard, general-purpose transport protocols, with nothing specific in their design Cot distributed
graphics. In particular, thc Internet Protocol allows usC of any of thc hundrcds of computing resources onl the
ARPIA lntrnict with no modifications to their operating systems.

4.4 The View Manager Interface

The view mnanager provides thc visible interface betwcen a person using thc V-System and the VGTlS. 'Iblis
is very difilrcnit from the programmer's interfatce to the VGl'S which was described abstractly in Section 3.4,
and discussesd in the previous section. Programs create Sl)1's and objects within themn, and associate these

hects with Virtual Graphics 'ermninals (VG'ls). Tlhrough tie view manager, the user miaps these VG's onto
a hsia crecn. and manipulates the resulting views hevwmaager also provides the ability to manage

exective, though an ilkrfilce to the exec server. A similar conipotienl in other sysicins is uisuallycle h
windo manger rcen manager. wbsscindsribes the deflult view mianager in the prototype VGTS

imnplementattion.

4.4.1 VGTS Conventions

On the physical screen, virtual terminals appear ats white overlapping rectangles with a black border and a
label near the top edge called the banner. 'Ibere is at most one virtual terminal (uisually aI pad, or text-only
virtual termninal) that is receiving input from the keyboard, along with possibly other virtual graphics
terminals receiving graphical input. These input selections are indicated by a flashing box (the text cursor) in

*~~*"~~ '*~"%' ' * .,Z
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the text virtual terminal, and a black label on all the views that are accepting input. Note that all virtual
terminals are always active in the sense that any application may run or change the display in any virtual
terminal at any time independent of these selections; selections only apply to input.

There arc a few conventions for using the mouse with the VGTS. A click consists of pressing any number
of buttons down and releasing them at a certain point on the screen. While the buttons are down there may
be some kind of feedback: usually an object that follows the cursor. The click is usually only acted upon
when all the buttons are released, so if users decide they have made a mistake after pressing the buttons they
can slide the mouse to some harmless position before releasing the buttons. Holding all three buttons down is
also interpreted as a universal abort by most programs and the view manager. The click event is sent to the
program associated with the view in which the event occurred (through its VGT).

Clicking the left or middle button Of the mouse in a non-selected virtual terminal will cause it to be selected
for input. Views of selected pads will be brought to the top. The input pad can be changed by typing the
control up-arrow character (octal 036) followed by a single command character. The only command
characters interpreted by the VGTS are 1-9 to select the given pad for input.

Although the user can always create views, some are created by application programs. In particular.
programs like the text editor will create a pad when a new virtual text terminal (pad) is desired. When a
V-System program requests the creation of a pad. the cursor will change to the word "Pad". At this point, the
user holds down any button, and an outline of the view that will be created will be tracked on the screen. The
user positions the view where desired, and releases the buttons. Other prompts can appear as cursor changes
to denote that the next click will not be treated as normal input. Unfortunately such convenience features
make the view manager very device-dependent.

4.4.2 View ManagerMenus

The view manager menus can always be invoked by moving the cursor to the grey background area or any
.' virtual terminal not selected for input (except in the banner area) and pressing the right button. The

following commands are available from the view manager menus:

Create View Creates another view of an existing VGT. Move the cursor to the desired position of any
one of the four corners for the new viewport. Hold any button down, and move the cursor
to the diagonally opposite corner. An outline of the new view will iollow the cursor as it
moves with the button down. I.et the button up, and then point at the VGT that is desired
to be viewed with the left or middle buttons, or hit the right button and select the VGT
from the mcnu. Normally this command is only used with graphics VGTs.

Delcte View One view is clicked and removed from the screen. If the last view of a VGT is deleted, it
does not destroy the VGl or the process associated with it. It is still possible to create
views of the VGT by using the right button menu in the Create View command.

Move Viewport Pressing any builton selecis a viewport to move. While the btton is being held down, the
outline of the viewport will nlove, following the cursor. The button is released at the
desired position. None of the other view parameters are changed. A shortcut to this
function is obtained by pressing the middle button while pointing to the banner of the
desired viewport. lhe viewport outline will follow the cursor until the middle button is
released.

Make Top Brings the view to the top. potentially obscuring other views. A shortcut to this function is
obtained by pressing the left button while pointing to the banner of the desired viewport.

V.

,.
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Make Bottom Pushes the view to the bottom, potentially making other views visible. A shortcut to this
function is obtained by pressing the right button while pointing to the banner of the view.

Exec Control Selects a submenu to create another executive, destroy an executive (and the teams running
in it), kill a program, or control paged output mode. When creating an executive, the
outline of the new pad will follow the cursor as the user holds the button down. The user
lifts the button up at the desired position, or presses all three buttons to abort. A shortcut
to the exec control menu is obtained by pressing both the middle and right buttons while
the cursor points to the gray background or the display area of a viewport not selected for
inpuL

4.

. Graphics Commands
S.,. Selects another menu of commands that are usually only applied to graphics views. A

shortcut to this menu is available by clicking the right and left buttons at the same time
while the cursor points to the gray background or the display area of a viewport not
selected for input. These graphics commands are described below:

- Center Window Click the position to become the center of the viewport. This command does not change
the position of the viewport on the screen, just the objects within the view. Normally this
command is applied only to graphics views.

Move Edges Push any button down next to an edge or corner, move that edge or corner to the new
position, and let the button up. The edge outline should follow the cursor as long as the
button is held down. l)oes not move the objects being viewed relative to the screen.

Move Edges + Object
Similar to the previous command, but this one drags the underlying objects around with
the moved edge or corner. while the previous command keeps it stationary with respect to
the screen.

Zoom Invokes a zoom mode, indicated by a change in the cursor to the word "Zoom". Users can
get out of this mode in two different ways: First, clicking the left or middle buttons when
the cursor is inside a view of a pad returns from the view manager and selects that pad for
input. As a side effect tiat view is z1) brought to the top. Second, users can click the right

* . 4 mousc button to exit this mode. The cursor should change back to the normal arrow.

The left and middle buttons in zoom ,node zoom out and in respectively. 'lhat is, the left
button makes the objects look smaller, and the middle button makes them look larger. A
shortcut to this mode is available by clicking the middle and left buttons at the same time

while the cursor points to the gray background or the display area of a viewport not
selected for input.

Expansion I)epth Click to determine the view. then select the new expansion depth from the menu. Symbols
will not be expanded more than this many levels into the hierarchy. Instead they will he
drawni as outlines with text for their names if there is rootm. The delault expansion depth is
infinity. so all levels will be normally expanded.

U-Ir

Redraw Redraws all the views on the screen; necessary only during debugging.

Toggle Grid Click once to turn the grid on if it is off, or off it is on in the view selected. The grid dots
are every 16 screen pixels, and always line up with the origin.

Debug Enables extra printouts, for maintenance use only. This command asks for confirmation,
to discourage its accidental invocation.

S J , ." -. ". %- .
"
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4.5 A Simple Application

iThc VGTS and View Manager provide many functions that encourage applications to be simple and
consistent. The s i l ed i t program, a simple illustration editor, is an example VGTS client program. It uses a
compatible file format with the Alto S I L program, although some advanced features such as macros are not
implemented [141). ie main limitation of this format is that only horizontal and vertical lines arc supported,
with a limited range of fonts. On the other hand, it is simpler and faster than the other V-System illustrator

- (draw), and illustrations produced by s i 1 edi t can be easily printed or inserted into other documents. A
remote version of this program executes under UNIX, although users prefer the V-System version when
permitted by workstation memory limitations.

4.5.1 Basic Operation

The s i I ed i t program is invoked with one argument in the V-System executive:

siledit filenate.sil
It first attempts to open the file name given as an argument. If no such file exists, the program creates one. A
graphics VGT is created, and the cursor changes to the "View" prompt indicating the creation or a default
view. "'h, default view will be slightly larger than the illustration, or a whole page if the illustration is empty.
The user presses and holds any button causing an outline of the new view to appear and track the cursor. The
user moves the upper left corner of the default view, and lifts the button up when the view is positioned.
Next the si 1 ed it program prints the names of the text fonts to be used, and tries to load them into the
VGTS. [he existing illustration is displayed (along with some performance statistics), and the following
prompt appears:

Use mouse buttons: Mark, Select, Menu

WThis means two mouse buttons are used for the basic commands, with other commands available through
*.. combinalions of buttons or from the command menu.

.he mark, indicated by an "X" shaped cross, is one end of lines and the position of added text. Once added
to the illustration, objects can be modified by selecting them and performing a modification command.

* Selected objects appear highlighted in some way, although the exact fo nn of the highlight may depend on the
VGl'S implementation. In the SUN implementation, objects are normally black on white, with selected lines
half-tone gray and selected text appearing within a gray box.

4.5.2 Commands

Commands available on the mouse are as follows:

Left Button Moves the mark to the point of the click. 'lie "X" shaped cross moves to the new location.
The mark is normally moved before drawing lines or placing text.

Middle Button Selects the single object at or near the click. Any other objects previously selected are no
longer selected. The program will echo the kind of object selected, or issue a diagnostic if
no objects are found.

L.eft+ Middle Draws a line from the mark to the point of the click, of current line width. "lie line is
either horizontal or vertical, depending on which difference in position is larger. This is a
faster way of drawing lines than using the menu. The mark is moved to the point of the
click, to facilitate drawing a series of connected line segments.

Middle+ Right Adds the object near the click to the selection. This is in contrast to the Middle Button,
which causes exactly one object to be selected. Use this command to select several objects.
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Right Button Pops up a command menu, as described below.

More advanced commands are available on the menu as follows:

Quit Exits without saving the illustration. Usually the Write command should be used to save the
file, so if there have been changes since the last Write command, confirmation is requested.

Line Width Pops up a menu of default line widths. Select the desired new width from 1 to 8 units. Clicking
outside the menu results in no change.

Delete I'he selected objects are deleted.

Unselect A click is requested- the object near that click will no longer be selected.

Draw Line A click is requested, and a horizontal or vertical line is drawn between the mark and the
position of the click.

Add Text A line of text is requested, and the text is added at the position of the mark in the current font.

Modify Text Selects another menu for commands used to modifying text.

Write Writes the illustration back to the file given on the command line.

Stretch Line Position the cursor near one end of the selected line, and hold down a button. Thc end of the
line will move following the cursor until the button is released. (Available only in the native
V-System version.)

Move Position the cursor anywhere in any view of the illustration and press any button. 'lhe selected
objects will follow the cursor until the button is released. (Available only in the native V-
System version.)

Copy Position the cursor anywhere in any view of the illustration and press any button. A copy of the
selected objects will follow the cursor until the button is released. (Available only in the native
V-System version).

Box Move the cursor to one corner of the box. and press any button. While holding down the
button, position the opposite corner of the box. The box will be drawn in the current line
width. The box can be aborted by pressing all three buttons at the same time. (Available only
in the native V-System version.)

Select Area Move the cursor to one corner of the area, and press any button. While holding down the
button, position the opposite corner of the area. All objects within the area will be selected.
(Availahle only in the native V-System version.)

I)chug Fnables several debugging print statements, for maintenance use only. (Available only in UNIX
version.)

The fiollowing commands are used to modify text:

Fdit 'l'ext ']'he selected text is stuffed into the VGTS line buffer, and edited by the user.

l)efault Font Displays a menu of fonts to become the new default font, for Text added with tie Add Text
command.

Change Font Displays a menu of fonts to be the new font for the selected text.
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4.5.3 Selecting Alternate Fonts

Two text font/size combinations are available in SII format, with regular, bold and italic faces in each
font/size combination. Default fonts are Helvetica7 and HelveticalO, with Helvctica7B, the bold face,
Helvetica7l the italic face, etc. A third font, 'emplatc64, is used to draw circles and diagonal lines.

Other fonts can replace Helvetica by creating a file with the namefilename. fon ts. This file contains the
names of the fonts to be used, one per line. Comments are indicated by a # character at the start of a line.
The default fonts are acceptable for illustrations to be included in papers, but for slides larger fonts like 12
and 18 point should be used. Thus, for example, the font file:

# font file for slides
Helvetical2
Helvetica18

could be used when making slides. A simple command to list the defined global symbols in the font library
can be used to determine what fonts are available.

4.5.4 Generating and Previewing Printed Copy

A related program called s i I press produces printed illustrations from SIL format files. Alternate fonts
can be selected as in die s i I ed i t program. The command line:

silpress filename.sil

converts the named illustration into a printing format file and queues it for the local laser printer. An option
is available to retain the printer format file, to merge the illustration into a document produced with the
Scribe or TJ:X document compilers. It may take several iterations to get proper positioning and size, but it is
faster than using a scissors and paste. T'he show program can be used to preview documents including
illustrations before they are printed.

4.6 Summary of Implementation Status

Virtual Graphics Terminal Servers have been inplemented for five varieties of SUN workstation, with two
kinds of frame buffcrs. Interface libraries have been written in C and Intcrlisp. The C interface for UNIX is

callable from other languages such as Pascal. Implementations fIr the IRIS workstation and VAXStation are in
progress at the time of this writing.

Current applications include:

o Emacs and an Fmacs-like text editor [211,
o a VI SI layout editor [421,
o a font design system [741,
e a font and bilmap editor,
o two doctmet illustrators,
o a document previewer,
I See distributed games. and
o a variety of display tools for vector graphics and raster images.

All applications may be run directly on workstations if they have enough memory. Many may also be

4, available remotely, under systems supporting appropriate network protocols and interface libraries, such as

VAX/UNIX or I)i('System.-20/''Os-20. Since all interaction goes through the VGI'S, other clients include
executives and any remote applications accessible via TEI .NI.'-style protocols. 'lus, we have implemented
clients of types A through D in Figure 3-5. With respect to short-circuiting, the VG'S handles cursor control,
hit detection, zooming, line-editing, and all screen management functions.

I
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The implementation is reliable and fast enough to be used as a general computing environment. In fact,
this thesis was written primarily using a text editor under the VGTS, and all diagrams were produced using
the illustration editor described in the previous section. The experience gained from this use helped to judge
the importance of criteria such as performance and reliability.

Appendix C gives some details of the development of the VGTS. including other people who contributed
software to the effort. The prototype implementation took less than one year by the author, with slow
evolution continuing by others. The next year was spent evaluating the design, which is discussed in the next
chapter, and taking measurements, which will be discussed in Chapter 6.

'.i
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VGTS Design Rationale

Some of these trade-offs are discussed in this chapter, along with rationale for the way decisions wcre made in
the VGTS. One of the basic trade-offs is that for every "feature" to be added there is an associated cost. The
cost must be balanced carefully against the potential benefit of the feature. Since this was a research project,
we were concerned with developing the minimum functionality to create a tool for some prototype
applications and taking measurements, rather than a system that could meet everyone's needs.

Many of the factors interact with each other. For example, the general partitioning issues discussed in the
first section could cause performance problems discussed in the second section, and analyzed in the third
section. The results of this analysis lead to the centralization decision given in the fourth section. Although
centralization aids in portability and uniformity, it can cause problems with customizability. In the last
section, the suitability of the VGTS design for the future is discussed.

5.1 General Protocol Issues

Some basic problems appeared when trying to define a good interface (VGTP) to the VGTS. Although
*. total application and device independence is a laudable goal, it can lead to a VGTS that supports too much

function for some applications and too little function for others. Both situations lead to excessive overhead:
the first because the VGTS is doing too much; the second because the application must go to extra lengths to
subvert the VGTS. For example, if the VGTS were tailored for the basic SUN workstation, it would include a
variety of routines for clipping and scaling. However, in the IRIS workstation these functions are provided in
hardware by the Geometry Engilic [381. General'y, the IRIS provides considerably more functions than the
SUN workstation, favoring additions to the VGIP. Thus, the VGTS itself had to be structured as a collection
of building blocks, and careful consideration was given to the intended range of graphics devices and
applications.

5.1.1 Fundamental Implications of Partitioning

Although networks should be as transparent as possible, physical distribution raises fundamental problems.
In all cases we would like to limit both the frequency ofcommunication and the amount of data transmitted at
any one time. In some extreme cases this might require caching mechanisms on the workstation and
necessitate complicated protocols to keep the workstation cache synchronized with the remote database.

Nevertheless. we observed that most interactive programs could be divided into a fronleid that converses
with the user and a backend that does the real prccesTing. Ihis simple model olfuser interaction is illustrated
in IFigure 5-1. The ideal VGoTS would provide a common user interf'tce portion and avoid the duplication

4 and inconsistent interlces tdiat currcntly abound between applications. In so doing, it would short circuit the
traditional interactive response cycle between the user and the application [551.

*9w
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Figure 5-1: User interactive response cycle

Short-circuiting is possible at a number of different levels, including:

* mouse-controlled cursor: The updating of the cursor position is performed by the VG1'S in
response to user motion of the mouse (or similar pointing device).

e screen management functions: These are necessary to allow multiple applications to run
concurrently without intcrfercnce.

9 hit detection: Applications are informed when a significant event occurs, such as selection of an
object: they do not keep track of the cursor position.

* editing: The VGTS supports editing so only some high-level indication of the editing changes
needs to be communicated to the application.

Higher-level short-circuiting, such as local hit-detection, provides:

1. better response for those operations that can be short-circuited,
2. better utilization of powerful workstation resources,
3. lower demands on the network (for distributed applications),
4. reduced programming required for applications, and
5. lower processing demands for hosts.

I lowever. to support high-level short-circuiting, ie VGTS needs to be provided with high-level information
about input and display semantics. That is. the VGTP must allow tie application to communicate the model
that it is representing pictorially, not just the image of that model, as is common in contemporary graphics
systems.

Imagine, for example, that multiple VGi's were mapped to overlapping viewports on the display screen. If
the top VGT is repositioncd on the screen, it and the previously obscured VGT(s) must be redrawn. If the
VGI'S does not have a model of the picture associated with the VGT. the VGTS cannot redraw the picture in
its new position. Similar observations hold for panning and zooming. Instead, the VG''S would query a

apppossibly remoe pplication to redraw the picture, a potenlially time-consuming operation. Naturally, it is
even more imporlant for the VGI'S to support a model if it is to provide generic editing.

cThe exact kind of model provided by the VG'S could have ranged from simple to complex. For example,
even systems like GKS provide a rudimentary form of modeling through the Workstation Independent
Segment Storage capability. The power of using more general structure to define pictures has been exploited

*i since the pioneering SKI1CIIPAD system in die early 1960s 11351. Ironically, a number of early graphics
systems took this approach to its extreme by merging the application model and tie display file into a single
graphical data base 136, 1121. 'lIis ap)roach fell into disfavor largely because it imposed a fixed
representation on all applications. In light of distributed graphics, it is also impractical to support a single
data structure spanning multiple machines.

* - . . . . . .
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A number of subsequent systems developed the notion of a structured display file that encodes the
hierarchical structure of figures, but leaves most of the application-specific information in a separate
application model [51, 52, 126, 1481. The structured display file is partially redundant, but provides a
reasonable amount of structure for high-level short-circuiting. In particular, compared to the more
conventional segmented display file, a structured display file can provide better response when editing
objects. Our initial application was VLSI circuit layout, which often requires drawing objects that are highly
structured and regular [831.

,The use of structured display files in the VGTS was motivated primarily by Sproull and Thomas's
Structured Format Protocol, which in turn was motivated primarily by network issues of the sort discussed in
this section [1261. However, that protocol was never fully implemented, primarily due to the lack of sufficient
computing power in the terminals available at that time.

In contrast, more traditional graphics packages do not retain object definitions at as high a level. This has
three major performance problems compared to the VGTS. First, defining complex objects can require
significantly more time, if those objects contain several instances of the same symbol. Second, editing existing
objects is more time-consuming since the entire object must be redefined. Third, generating different views
of objects is considerably slower, since the application itself must redraw each view. On the other hand, "on
the fly" graphics could be faster under traditional systems since the VGTS does not permit an application to
simply "write" on the display, but rather requires the application to repeatedly edit and redisplay an entire
symbol.

The evolution of graphics protocols can be compared to the evolution of general purpose programming
languages. The simple biunap oriented systems can be compared to assembly language, with total generality
but lack ofw structure. 'he next step is procedure abstraction, which corresponds to languages like BCP with
control structure. The final step is to provide both control and data structure abstractions, such as languages
like Pascal and Ada.

Another worthwhile analogy is with low-level disk storage systems. Farly attempts forced users to deal
directly with the sector, track, and head allocation of disk files. The concept of "logical blocks" divides the
disk into uniformly sized and sequentially numbered blocks. interacting with disks in terms of these slightly
higher-level objects makes impossible some of the clever optimizations done by early programmers.
lowever, the advantages of this level make it almost universally used in modern operating systems.

5.1.2 Replication Issues
The replication of data (keeping multiple copies) that results from the pz-rtitioning described in the last

section was another major design issue for the VGTS. In graphics systems, the multiple copies are usually at
different levels of representation, and the reason for the copies is performance. The actual number of
representations may vary, but most high-perflormance graphics systems maintain some kind of display list or
display lile, which is intermediate in representation between the application's data structures and the final
displayed picture 1561.

For example. an application usually reads some permanent data files and constructs an internal model of
the objects being displayed. A structured display file contains in formation on siructurC and geonmetry, but no
application information. The viewing process then displays this SIF with some viewing parameters, in our
case on a bit map terminal. Thus, a typical situation may result in four levels of partially redundant
information. This leads to several natural places to partition the data in a distributed graphics system, as
illustrated in Figure 5-2.

*" In each case the data structures below the thick line are stored on the workstation, and those above the line
are stored on some remote server machine. In traditional personal computers, everything would be on the

,%%
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Figure 5-2: Possible data partitioning points

workstation, with the possible exception of data on a large archival file server to back up the personal
computer's files. For large but diskiess workstations, de application program can still run on the workstation,
but access the data files over a network. For smaller workstations, the structured display file is stored locally,
but the application program runs on the machine with the file system. In the simplest of workstations, only
the bit map is stored locally.

Note that arrows only go one direction, from the higher level representation to the lower level one. Each
representation can be generated from the next higher layer, which greatly simplifies the propagation of
updates. Pipelining. including possible hardware implementations, is much easier if the conversion is always
in one direction. In actual practice, however, some amount ofrshort circuiting can be done to provide faster
feedback, si cc input has to travel in the reverse direction. 'lhe architecture and implementations of the
VGTS keep this short circuiting to a minimum, with only a few simple local functions vastly improving
average pertormance. More research can be done in the future within this framework on even higher levels of
short circuiting.

The V-System allows all configurations of Figure 5-2, although the first (personal computer) and last (bit
map terminal) have heen thoroughly investigated in other work discussed in Chapter 1. Ilic configurations
labeled 'sinall workstation" and "large workstation" are the focus of this work..

*5.1.3 Caching Issues

One way to further reduce communications costs would be to write an agent for each application that
maintains a cache of the main data base. Once a cache is in place, the usual problems of update arise. When
should the cache updated and how much of it is updated at a time? For example, there are two interesting
cases in circuit layout:

When viewing the entire design it is unncessary to maintain the details of the lowest levels. 'Ibis
information may be omitted in order to maintain the representation for the higher-level structure.
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. When viewing a specific component it is unnecessary to maintain the reprcscntation of pieces of
the picture not now on view.

Thus the agent would be constructed in such a way so as to maintain only the necessary data. Appropriate
parts of the figure representation would contain the equivalent of invalid pages, leading to the equivalent of
page faults.

The ideal VGTS would provide most of this support without requiring that a special-purpose agent be
written for each application. Although the current VG'I'S architecture allows caching, the current prototype
does not implement any. Tlie size of most SI)Fs rarely exceeds two or three thousand bytes, which is an
insignificant amount of memory compared to the size of the VGI'S itself. This and other possible VGTS
extensions are discussed in the final chapter.

5.1.4 Transport Protocol Issues

Once the higher-level protocols are decided upon, the transport and lower level protocols must be
determined. Possible choices for transport protocol include datagrams, byte streams, and packet (or message)
streams. Streams are an obvious choice because they generally provide a high degree of reliability, can be
used with a wide variety of terminals and networks, and simplify programming the applications and the
service. In addition, if the workstation and remote host interact frequently or in volume, high bandwidth is
required, better achieved with virtual circuits.

If bandwidth requirements are low, then the low delay of datagrams might be more appropriate.
Furthermore, interactive graphics requires real-time communication, which places greatest importance on the
most recent data. In contrast, streams under load tend to lose or delay new data in favor of old data. lhe
graphical representation also impacted our choice. Since high-level information was being transmitted, the
loss of a single datagram would be catastrophic. Thus, only "reliable" stream-oriented protocols were used.

Fortunately, the V-System architecture allowed us to experiment with several of these protocols. Each
remote application must have an agent on the workstation, so the application and the agent may communicate
with whatever protocol they desire. Since our prototype applications had relatively modest requirements,

simple encapsulations of the VG'I'P with standard byte-stream protocols were most widely used.

5.2 Performance Issues

Besides communication issues, performance was also kept in mind during every phase of the design of the
VGTS. Without careful attention, many distributed systems can end up being slower than their centralized

-. counterparts. In particular, many previous distributed systems have failed because of lack of attention to total
system performance. On the other hand, although poor performance guarantees that a system will fail, high
performance does not guarantee success. Other factors such as the various costs associated with high
performance cannot be neglected.

5.2.1 Code and Data Size

I)cspite the falling cost of memory, main memory can still be a major cost of a computing system. In fact,
no matter how much memory a computer system has, it seems to almost always need more. Eliminating
duplication is one way to save memory, but often redundancy buys perfonance. A hardware cache is an
example of such redundancy used to speed tip a physical processor. Similar techniques to take advantage of
redundancy were used in software, as discussed in Section 5.1.2.

.7.
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Another way to save memory is economy of function: to not implement features that are rarely used, or
that can be done with existing capabilities, unless they are necessary. For example, some users might like to
have blinking as a primitive attribute. Since blinking can be simulated by having the application program
repeatedly add and delete an item from a symbol, blinking attributes were not included in the VGTS. This
means that each application program must include code for blinking if desired, but the overhead is rarely
encountered. On the other hand, diagnostics and error recovery are intended to be rarely used in properly
written software, but many understandable error messages are included in the standard VG'TS, since when
they are used they can provide invaluable information.

5.2.2 Resource Limitations

hlhe concern for memory costs is another prime motivation for the use of high-level display files instead of
the more common bitmap approach. Note that the architecture does not explicitly prohibit the storing of
bitmaps. and in fact a bitmap item type is supported. However, Section 4.2.1 described how the prototype
implementations redraw only from the SI)F, with no bitmap caching of overlapping areas necessary. The
current architecture requires that to display large images the entire bitmap must be transferred into the VG'lS
for every change. Ibis has proved adequate for simple image display tasks, or editing small bitmaps such as
characters. For more intensive image processing applications, simple raster operations could be provided on
raster objects to improve performance if necessary.

6 -Some display file approaches may severely limit the maximum size or complexity of objects that can be
displayed. For example, many traditional graphics system support only one level of structure, the segment.
Since we are primarily concerned with the research community, absolute limitations should be avoided
whenever possible. Hlowever, making some assumptions about maximum resource limitations may simplify
the design or improve performance. For example, a reasonable limit on the number of virtual terminals or
views might be an acceptable limitation, so such limitations were included in the prototype VGTS
implementation.

5.2.3 Speed of Execution

The two main measures of execution speed of interactive systems are response time and throughput.
- Response time is more important when the user has to wait. Many users of early workstation systems had to

spend much of their time waiting while an "hourglass" cursor appeared on the screen. Operations which take

significant amounts of time should have been done in the "background". 'Ibis requires a priority-based
multi-process operating system, such as the V-System.

For all other applications for which the user does not have to wait, throughput should be maximized. Since
the hardware trends are to more specialized processors, a natural division is suggested between processes

" , optimized for response time (interactive) and those optimized for throughput (batch). A fairly common
scenario for users of the VG'S is to be running an editor on the workstation in one VGF while monitoring
several long-running hatch operations in other VG's at the same time.

5.3 Some Simple Models

As discussed in the previous section, many attempts at distributed systems have failed due to poor
performance. In addition to the inherent cost of the computation, the costs of communication between the
parts of the distributed program are incurred. Thus the total computation cost of a distributed program is
almost always higher than the total computation cost ofan equivalent centralized program.

mb.
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' Thcrc arc two approaches to improving the performance of distributed programs, both by identifying and
overcoming these communication costs. The traditional approach is to improve the performance of the
underlying network communication mechanism. The work of Spector and others on remote memory
references is in this category [125]. A more promising approach taken in the VGTS was to decrease the
amount of network traffic by using higher-lcvel protocols. In other words, reduce the frequency and volume
of communication by making the applications more loosely coupled.

For comparison, consider the many performance studies made of demand-paged virtual memory systems.
Although performance can be improved by speeding up the handling of page faults, better results are usually
achieved by reducing the nutmber of page faults. For example, increasing physical memory, tuning the page
size, improving the locality of the application, or using a better selection algorithm can make as substantial a
difference as the speed of the disk.

Although this section does not attempt an exhaustive analysis of the VGTS architecture, some very simple
models can be developed. As in other simplified models of two-processor systems [132], a simple model is
necessary before a more detailed one. Although some attempts have been made to model larger systems of
many processors [131], these have mostly been theoretical models with very little total system performance
data. At first glance one might assume tiat the factor most important at any given time is the bottleneck, and
construct a queuing theory model. 'libe problem is that in a complete system the bottleneck is not so
well-defined.

5.3.1 Comparison to Cache Model

A cache is a well-known hardware mechanism to improve performance of a hardware design by taking
advantage. of locality properties of software 11211. The locality principle states that a program's references to
data are not uniformly distributed, but instead concentrate around a set of locations at any given
moment 11081. A small number of addresses are responsible for a large fraction of the memory references.
'he virtual memory concept is made possible by taking advantage of the principle of locality at the next
higher level in the storage hierarchy. We can extend this concept to an even higher level, and take advantage
of the patterns of usage for high-level graphics functions in the VGTS.

In a distributed graphics system the processor in the cache model plays a role analogous to the workstation.
and the main memory corresponds to other server hosts. T7he performance of a cache can be roughly
characterized by four numbers:

11, l is the average time for access to the smaller but faster resource.

Tremote is the average time to reference the larger but slower resource.

Tcomm is the time it takes to communicate between the local and remote resources.

p is the "hit" rate. or probability that an average operation can be handled by the local resource.

* 'This large communications Iactor, 'I is the major difference from the hardware cache model, along with
another component that is common to both local and remote operation:

rvgt is the average time taken by the VGTS for both local and remote operations.

The average time for all operations is then:
p,,

% Tavg = p Tloca I + (I - pXTcomm + Tremote) + Tvgts

'lThe ideal would be to minimize this time with respect to the various hardware and software trade-offs
mentioned in the rest of this chapter.

a4
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In more concrete terms, this model represents a terminal by making p zero (or very small), so no operations
are performed locally. The terminal role is acceptable when Tcomm and T remote are small components of the

overall cost, which implies a very fast mainframe and high-bandwidth communication (or batch-oriented
tasks). When p is near one, this models the personal computer configUration. Personal computcrs are fastest
when T1ow is small, which implies fast personal computers (or simple interactive tasks).

When the task is too large to be handled by the personal computer or terminal configurations, the following
approaches can make Targ smaller:

1. Reduce Tcomm (communication time) by using special protocols or network improvements. This
requires measurements to determine if the actual bandwidth of the network or the transport

protocols are the bottleneck.

2. Reduce T oea by using a faster workstation. As we will see by the measurement results, speeding
up the processor usually has the desirable side-effect of also increasing effective network

throughput, or reducing Tomm. However, this cost must be incurred on every workstation.

3. Reduce Tremote by using a larger, faster computer for the server host. This cost can be shared

among all the workstations sharing a server.

4. Increase p by caching information on the workstation or using high-level short circuiting so that

more operations can be performed locally. Applications could also partition themselves to put
more of their functionality on the workstation. Note that this usually implies an increase of the

memory of each workstation.

5. Reduce T by improving the performance of the VGTS itself. In fact, for many simple

applications with insignificant computation demands, this factor could be the only important one.

The value of short-circuiting has already been introduced. The next section goes into more detail on the
relationship between the local, remote, and communication times in the VG°lS model.

5.3.2 The Time Dimension

VGTS performance can also be examined by viewing the events along the time dimension. Figure 5-3
illustrates the time used on each processor resource for one typical interaction response cycle. Time
progre.ses Iron left to right. e111e first example is a per)nal computer configuration. The next two lines
represent the partitioning of the problem between a workstation and a server host.

The variables in Figure 5-3 represent the following values:

TInput Represents the time to handle the input event. This is usually the same in both the local and
distributed case.

"rswapin Represents the time to swap in or otherwise change contexts to the application program on theworkstation.

"-",,-',. - '-
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Figure 5-3: Simple rcqucst-response time model
TNetl Represents the time to send the input event from the workstation to the server host, for the

server to receive it, and possibly schedule and change context to the computation.

Tpc Is the time for the computation to be executed on the workstation.

T'Server Is the time for the computation on a server. Usually execution of the computation is faster on a
larger central server host than the individual workstation.

TswapOut Represents the time to swap out the application program, or change contcxt back to the graphics
system.

T NetOut Represents the time to send the results from the server host to the workstation, for the
workstation to receive it, and possibly schcdule and change context to the display process.

TDisplay Represents the time to display the result of the interaction.

The conclusion from Figure 5-3 is that it is faster to use the workstation/server split when the swap times
plus the local computation time is longer than the round-trip network overhead plus the host computation
time. That is:

- Tswapln + T1C + Tswapout > TNet n + Tserver + TNetOut

is the condition for superior performance of the partitioned configuration.

Since the V-System at the time or this writing supp Ots neither paging nor swapping. Tspm is either
insignilicant (for programs already fully loaded) or else it is the time to load the application program.
Similarly. 'wap u. is the time for a context switch. On the other hand, lbr the applications mentioned in
Section 1.2.2 that must run on the server, the swap times are essentially infinite. On most personal computer
operating systems, swap times can be as high as several hundred milliseconds. Even without physical
swapping, many operating systems have long context switching times.

Thc time dimension analysis suggests the following techniques to improve performance:
1. Reduce the T]'Nctn and TNctOut times by reducing delay in the network, increasing the bandwidth

of the network, or increasing concurrency in the network overhead.

% -% 1
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2. Have the server send results back to the workstation as soon as possible, since the rest of its

computation can continue in the background concurrently with TDisplay.

3. Use the personal computer approach whenever possible with high timesharing loads.

Timesharing loads add a queuing delay to Tserver, which could easily make it much higher than

"pc on a powerful workstation.

These models provide the framework for interpreting the performance measurements to be given in Chapter
*. 6. The following sections will discuss important design considerations that may not be directly related to
*. distribution or performance.

5.4 Application Multiplexing Alternatives

One crucial job of the viewing service is to multiplex the single user and display devices to the possibly
many application programs. 'Ibis function is similar to that of the kernel or process manager of a general
purpose operating system.

5.4.1 Decentralized Control

Most operating systems handle contention for the processor by letting one process have full control, then
saving the statc of the processor, loading the state of the next process to run, and letting that process have full
control. A similar approach could be taken with graphics [35]. The reasoning is that this will allow higher

performance, since compiled programs usually have better performance than interpreted programs.
However, it is not necessary to have decentralized control to have compiled display lists; it is just a question of
whether the application program or the viewing service does the compiling.

A number of sophisticated object-oriented window systems have been built for personal computers with
decentralized control, as discussed in Section 2.2. While these window system approaches work well for local
applications, they do not extend well to remote applications, especially those written outside the framework of
the particular language and workstation. Even systems that attempt to provide the object-oriented "Lip-call"
functionality in a distributed environment have resulted in centralized control [59].

One major problem with decentralized control is that current graphics devices do not always allow the state
of the graphics device to be saved and restored. Another problem is that application programs would be
non-portable at the binary level even if there were workstations that used the same processor architecture but

* different graphics architectures. 'Ibis may not seem like a problem since source-level compatibility could be
* retaincd, but it could result in a version "explosion" with many copies of every graphics application, each of
*. which must be maimained in parallel with tie others. Since both of these problems existed for die SUN and

IRIS workstations, the decentrali/ed approach was not possible for the prototype implementation. 'Ile
* original motivation bir virtual terminals (see Section 2.3) was to eliminate tie n J i version problem.

5.4.2 Cent ralized Control

'The VGTS, on the other hand, is designed to operate in a environment composed of a variety of
applications, programming languages, machines, and networks, with widely varying terminal interaction
requirements. A centralized approach, rarely taken in bitmap graphics systems, communicates a list of objects
to be drawn to the viewing service, and the viewing service actually renders the objects. 'Ibis virtual terminal
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approach, previously introduced in Section 2.3, was taken in the VGI'S due to the advantages for portability
and partitioning.

It is not a contradiction (as it might seem) that partitioning implies centralization. Centralized control was
uscd in the VGTS to provide adequate performance despite expensive communication. The actual costs of
communication will be measured in Chapter 6. Another side benefit of centralization is conservation of
memory. Fach application program is smaller because it does not need to be linked with the graphics library.

5.5 Uniformity and Portability

Another set of issues concerns different aspects of uniformity. The general problem associated with
uniformity is that, almost by definition, uniformity may restrict flexibility. The goal was to restrict how things
are done, but not what can be done.

5.5.1 Device Independence of Applications

Since workstation hardware is changed constantly, software developed on one kind of workstation usually
does not nn on other workstations. One traditiolal approach to this problem have been query operations.
Application programmers may take advantage of query operations to change behavior depending on the
results of ie query [28]. This is a highly restricted form of device independence, that requires prcmeditadon
by the applications programmer of all possible devices with which the program will ever run.

Device independence has been recognized as a goal for quite some time, but is even more important
today [601. In fact, technology can progress so fist that by the time an application is finished, totally new
graphics devices may be available that were not even anticipated at the time the application was designed.

For example, the prototype VGTS took about one year to develop, another year to measure and a final year
to evaluate. In the meantime, the architecture of the SUN workstation had changed drastically, so the
prototype implementation no longer worked on the new workstation. If the VGTS architecture had been
tailored to the original workstation, then all the applications developed during these years would have to be
rewritten. Instead, as soon as the new version of the VGTS that handled the new workstation was installed, all
client programs could be run immediately, without any modifications. VGTS changes were limited to one
low-level module, the drawing manager, as indicated in Figure 4-1.

5.5.2 Uniformity of User Interface

In addition to uniformity across different hardware devices, uniformity across different software tools is
another desirable goal. Powerful hardware like hitmapsiand mice provide the opportunity for more advanced
interfaces, but also can cause chaos if each application choruscs it- own user interface. Every programmer has
his own idea of what is "right" and those tastes may not miatch those of the intended users. One partial
solution to this problem is the user interlace management systen concept which isolates the operation of a
program from the details of how those operations arc invoked [1431.

The VGTS provides a step in this direction, with the following user interface standards:

" Pop-up menu feedback is implemented inside the VGTS. 'l'e view manager menus as well as
those provided by applications are handled uniformly.

" A common line editor provides simple editing functions like character and word delete to all
applications requesting keyboard input.

-%
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e Banners provide a common mechanism to indicate some concise status information, such as the
name of the program currently executing.

e All screen management, such as zooming and moving of views is done uniformly through the view
manager.

* Other conventions and library packages are provided as suggestions. For example, pressing all
three buttons simultaneously signals an abort to most programs.

The result is that users quickly learned how to use new tools, instead of having to adapt to the whims of the
implementor of the new tool.

5.5.3 Portability of Implementation

It was found to be easier to modify the code of the first implementation to handle another kind of
workstation than to start from scratch. Several techniques were used to aid in portability:

e Restricting the range of hardware. In our case, the VGTS was targeted to higher-end workstations
and future higher performance hardware instead of the lower cost popular personal computers
currently being mass produced.

* Using a high level language. The VGTS was written in the C programming language [711. C
compilers are widely available for many computer architectures. The UNIX timesharing system
has been ported to many different architectures successfully by using C [661.

o Using a standard computer architecture. The prototype VGTS implementation was on the
Motorola MC68000 architecture, which has several different implementations used in many
commercial products [100].

*Attention to modularity and isolation of machine dependencies. This was only achieved by
actually supporting two or more devices with the same source code. Once the system worked on
two machines, the third was easier, and so on. The first few efforts detected subtle hidden
machine dependencies that would otherwise be overlooked, such as byte ordering problems [401.

Portability was another of many properties greatly helped by economy of features. A small system was
inherently easier to port than a larger system. For this reason many attractive features were not included in
the VGTS design unless they were. found to be necessary. For example, some users requested up/down
encoding of the keyboard, or advanced support for special function keys. Unfortunately, the implementation
already worked with about ten types of keyboards, some of which did not have up/down encoding or special
function keys.

Although the trend to faster but cheaper graphics workstations is unmistakable, the time between the start
of a design and its production is usually underestimated. For example, a major computer inanufacturer
announced a workstation product and demonstrated it in July of 1982. In the Call of 1982, a research contract
witli Sltmlobrd was negotiated that included porting the VGTS to this new workstation. By the summer of
1984 the project shifted efforts to a newer kind of workstation. I lardware progress had been so great that the
workstations were obsolete before they were delivered.

A more important problem with porting the VGTS was not technological but political. Most workstation
manufcturers were unwilling to reveal low-level details of their graphics devices. If they contained custom
hardware, the manufacturer wanted to protect the trade secrets involved in the hardware, so other
manufacturers could not use the same techniques. If the graphics devices were simple frame buffers driven
by software, the low-level raster operation Functions were proprietary, to prevent the use of the software on
other machines. In our case we had no desire to pirate trade secrets, but we failed to convince the
manufacturers that it was in their best interests to give us the information.
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5.6 Customizability

Unfortunately the goal of uniformity was in direct conflict with that of customizability. Although at first
customizability seems attractive, there are many hidden costs. For example, people often work together on a
single project in a research environment. Highly customized interfaces make exchange more difficult, if users
cannot use their custom commands on other workstations. On the other hand, since researchers arc often

*' systems programmers themselves, they have irresistible urges to change a program that they do not like. If the
interfaces are not designed carefully and flexibly enough, users will develop their own versions of the system
anyway and the goal of uniformity is lost.

5.6.1 Customizability by Programs

The author of a program may want to specify some slightly device-dependent "hints" about the display
process. For example, a program may have information on the size of some object or its desired location on
the screen. [he program may also wish to advise the VGTS on how the objects should be viewed. Although
the VG'S architecture allows such hints, only one was provided in the prototype implementation: An
application can declare the size of a default view.

One example of a programmer who wanted customization of the viewing process occurred in an integrated
VLSI layout editor and design-rule checker. The author of such a program requested the ability to position
an item within a view, so that a design rule violation could be centered in the viewport. Such a feature could
easily be added by creating another VGT with the item as its top-level symbol, and then defining another
default view with the desired coordinates. "'ie view manager could also include commands to center a view
on coordinates typed by a user, instead of pointed to by the mouse. Therefore, the view manipulation
capability was not added to the VGTS client interface.

A common argument is that programs should be able to perform any function that a user can perform. This
is not provided in the current VGTS. since the user interface deals with views and physical screens, while the
application interface intentionally hides these objects and deals with graphical items and virtual terminals.
One area of future research is the design of a different kind of interface that could be used for customized
view management. However, it is important to make the clear distinction between non-uniformity on the part
of the application tools, and customization of those tools on the basis of the user.

5.6.2 Customizability by Users

A user may want to specify a profile to tailor certain aspects of the user interface to his or her needs. For
example. novice users may want an interface that is easier to learn or in which it is harder to make mistakes,
while expert users want more powerful interfaces with commands available quickly. In addition, many
aspects of user interl'aces are a matter of personal taste. With respect to screen management, some people
prefer to use arbitrarily overlapped viewports as implemented by the protype VGTS. while others prefer to
utsc the liled appr oach, in which the view m;nagercauses views toexactly Iill the screen wilhoutt overlap 11401.
Another open question is the proper form of menus. In the current implementation, one button click causes
the menu to appear and another causes the selection. 'Ihis reduces the probability of errors when incorrect
button combinations are given, but requires two user actions for each menu selection. Other systems cause
the menu to appear when the button is pressed, and the selection to occur when the button is released.

Some systems use profiles on a workstation or application basis, but they should really be provided on the
basis of user, since users and applications should be able to use any workstation. 'lhe VGTS architecture
allows this customization of the view management process. but the current implementations do not realize this
capability. Partially this is due to the lack of a user identification concept in the current V-System, but also
due to the fact that the conventions as implemented have proven reasonable in actual use.prve
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5.7 Suitability for the Future

The future in the computer industry is hard to predict in detail, but some general trends are certain. We
wanted to take advantage of these trends whencver posible, instead of tying the design to technology that
would quickly become obsolete.

5.7.1 Future Display Devices

Larger, faster bitmaps, and special-purpose graphics hardware should become less expensive in the future.
For example, while this thesis was in preparation, the Apple Macintosh was made available for about $1000
with a University discount; this is less than most alphanumeric terminals. The Macintosh has a fairly small
display screen and low-performance processor, but the mere existence of the mouse and bitmap display in a
mass-produced product are encouraging. K

'111 IRIS workstation is an example of a higher-performance and therefore higher-cost system, with custom
hardware applied to the viewing process [39]. The current IRIS implementation renders the output primitives
using a bit-slice microprocessor, and is too expensive for wide-spread use. However, the IRIS is indicative of
the trend to applying special-purpose hardware to graphics systems.

Current developments include "smart memories" that use special devices to perform rendering, including
anti-aliasing and shading via ray-tracing, directly in the frame buffer [63]. Performance can be enhanced
further by using pipelining and parallelism. With this kind of hardware the Bitilit model of operations breaks
down. Instead of moving bits around, the interface to the hardware is at a higher level: declaring primitive
graphics objects like vectors and polygons.

There are two differing opinions on the effect of this advanced specialized hardware. One line of reasoning
is that since all this custom hardware is so expensive, the raw graphics device must be used at a very low level
to avoid wasting any power. 'le other line of reasoning is that new hardware can be used to allow
programming at a higher level, with straightforward. simple, and elegant approaches replacing the special
mechanisms necessary on slower hardware. Thie first opinion appeals more to those who design and market
the hardware, while the second appeals to those who develop the software and use the workstations. Since
software costs are becoming increasingly more important, in die long run the elegant software approach
should dominate.

As the VGTS was designed, it was hard to predict what the future held, but one thing was certain: there
would be many more changes in the kinds, quality, and cost of graphics devices. One good way to take
advantage of these new devices, given this uncertainty, was to use abstract, high-level interfaces and
concentrate on portability as done in the VG'I'S.

5.7.2 Future Computer System Organization

Ironically, tie personal computing trend may be short-lived. Computer systems are still expensive, and
people can not alTord filly configured personal computers. On the other hand, microprocessors are almost
free. and getting cheaper. The cost of a microprocessor should eventually approach the cost of a memory
integrated circuit, so despite the increasing densities of memory, the trend should be to less memory per
processor instead of more memory per processor. lhe result should be computer systems that consist of many
microprocessors working together.

For example, the cluster of workstations for which the VGTS was developed consists of about ten diskless
SUN workstations connected with a local network to three VAX- l/750s, one VAX-I 1/780. and a shared
IrcSystem-20. In fact, each of the workstations is really a multiprocessor in its own right. In addition to the



VGTS DESIGN RATIONALE 69

MC68000, there arc simple finite-statc machines to refresh and update the frame buffer, a bit-slice processor
to handle the Ethernet, and microprocessors in the keyboard and mouse.

For these reasons, protocols that treat the workstation as a terminal (that is, partitioning below the VDI
level as illustrated in Figure 2-2) are not very interesting for the future. The main limitation with these
protocols is that they assume only one connection at a time. Since future computer systems will probably
have many processors, and a single user will probably use many processors at once, the VGTS should allow as
much concurrency as possible. Concurrency is a useful concept both at the hardware level (as many
computers as possible should be kept busy) and at the higher levels of user interface (the user should be able
to have many tasks in progress at the same time). As a first step, the VGTS provides the graphics operations
in a separate process, instead of as functions called by the application programs.

5.8 Backward Compatibility

Although planning for the future is important, the VGTS design did not ignore the past. It is unreasonable
to expect all software to be rewritten for every new system. Fo" this reason, one VGTS goal was to be able to
take advantage of as much existing software as possible. A similar approach wa's taken in the BRUWIN virtual
terminal system [961: the terminal manager was designed to take advantage of existing tools, instead of being
the focus of all new developments. Even though lI UWIN provided support for only text on a conventional
graphics device directly connected to a timesharing system, it proved to be a useful tool. Similarly, the VOTS
also was able to access applications running under the UNIX timesharing system through remote execution.

"N' 5.8.1 Encapsulating Existing Facilities

For example, the V-System itself (including the VGTS) was compiled on a VAX/UNIX timesharing system.
Eventually more software development tools were ported to the native V-System environment. The ability to
run the tools under UNIX greatly eased the transition. Many specialized or proprietary programs are still
accessed through the UNIX server interface.

In addition, through the use of terminal emulators and user TI.NI.r programs, a VGTS user can run
applications anywhere throughout the ARPA Internet. This remote terminal capability has turned out to be
one of the most heavily used features of the current implementation. The next chapter will describe some
experiments using even interactive graphics programs in this manner. Fortunately, many tools can be
accessed in a batch fashion, so there is little performance degradation when they are executed remotely. For
example, this thesis was produced with a document compiler that ran on a UNIX server host.

5.8.2 Relation to Standards

Another way of taking advantage of the past is to follow standards. The graphical facilities of the VGIS are
similar to those several existing graphics packages, including those comiforming to the Core 11471 and
GKS 1641 standardization eflorts. The principal diflercnces are:

1. standardized support for object modeling as well as viewing;

2. hierarchical structure of objects;

3. the ability to handle multiple, distributed applications simultaneously;

4. less flexibility in terms of attribute and coordinate transformation facilities.

* * -1'
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In general, the standards remain oriented toward a single, dedicated host, and pay little attention to
distributed systems issues, especially the use of contemporary powerful bitmap workstations. Furthermore,
there were no specific applications written for these graphics standards that had to be supported by the
VGTS. Therefore the VGTS did not conform to any of these standards.

Some recent graphics efforts are more in the spirit of the VGTS. Both NGS [241 and PltGs 1[41, for
,: example, extended the concepts of GKS and Core to include structured display files, similar to the VG'IS. As

with previous standardization efforts, these go beyond the current VGTS in support for attributes and
coordinate transformations. In fact, had they existed at the time the VGTS was first designed (the fall of
1981), we might have adopted many of their facilities outright. However, neither emphasizes distributed
graphics (despite its name, Network Graphics System, in the case of NGS) or multi-application (window
system) facilities.

Table 5-1 summarizes how the VGTS graphics capabilities compare to some traditional graphics packages.
The first colurr n gives the name of the graphics package, and the second gives the number of dimensions in
most operations. The next column indicates the kind of structures, including no retained segments in minimal
GKS, simple one-level segments in CORE and GKS, execute segments (like procedure calls), and copy

.'', segments (like macro expansions). The next column gives the approximate number of functions, which is
,, always larger than the small number of graphics primitives. The last column gives the approximate years

during which the disign took place.

System Dimensions Structlure Functions Years
CORE 3D Segments 227 1977-1979
GKS Maximal 2D Segments 185 1978-1982
GKS Minimal 2D None 48 1981-1982
NOS 3D Copy/Execute 181 1982-1984
PHIGS 3D Copy/Execute 180+ 1983-1985
VGTS 2D Execute 30 1982-1984

Table 5-1: Comparison of graphics packages to VGTS

lhe Virtual Device Interface, VDI, could be used as a real terminal protocol in tie VGIS, by developing an
SI)F interpreter that would generate VDI commands. The same observations hold with respect to
NAPLI.PS [6]. 'Ibis would allow a single VGTS implementation for all devices meeting the specification. An
interesting question is whether all device dependencies should be below the VII (or equivalent) layer, or if
common code could be used to simulate the commonly missing hardware capabilities. For example, the code

to handle dashed lines for devices having only solid lines" could be written once instead of inside each device
driver. There seems to be an unwritten rule that if a graphics device has any special hardware capabilities,
then these "features" must be used, at almost any sacrifice in software structure. 'Ibis could cause problems if

- .. devices are supported that provide graphics primitives in hardware that arc not included in the VGTS
:-'."architecture.

5.9 Summary and Motivation for Measurements

'Ibis Chapter discussed the reasons behind the major design decisions taken in the VGTS. The next
*1¢" Chapter attempts to quantify the degree of these trade-offs. For example, the strictured display file approach

favors highly structured pictures, and incremental editing over initial display. 'Ihe penalty for initial display
and unstructured pictures should be small compared to the improvement for structure. Since total system
performance was considered important throughout the design, some simple models were developed and
examined in this Chapter. The models show that performance can be improved by reducing the frequency of
communication and the amount of information communicated.
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cThe centralized control of the VOTS has benefits for uniformity and portability, but still allows some
customization. Partitioning as exemplified by the VGTS should become more important as future display
and computing devices are introduced. On the other hand, users should be isolated from changing hardware
by encapsulation of existing facilities and adherence to standards. Experiments arc also needed to prove that
performance is adequate compared to the older systems being emulated and replaced.
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Measurements

'lTe previous chapter discussed many qualitative advantages of the VGTS design, such as portability and
suitability to luture hardware. Quantitative measures are also desired to provide a firm basis for evaluation.
One ultimate measure of a system's success is whether people choose to use it to get work done, even in a
research project. This criterion certainly applies in the case of the VGTS, since the high level of interaction
enforced by the VGTS may trade off some functionality, flexibility, or performance. If the amount of these
qualities lost is small enough compared to the advantages gained, then the approach may be worthwhile for at
least some class of applications.

For example, some graphics teninals allow special effects like limited animation using tricks with the color
map. On a workstation shared with other applications, these special mechanisms cannot be used, since
resources like the color map are shared between several different applications. This chapter will show that
careful deign of VG'S protocols can make performance acceptably close to that of other systems that do not
have the advantages of the VGTS.

6.1 Nature of Performance Measurements

Performance measurements have been taken for three benchmark programs, two for graphics and one for
text, in a variety of test configurations. In addition, the illustration editor used to create the diagrams in this
thesis was instrumented to measure memory usage, construction, and display rates.

6.1.1 Benchmark Programs

The first graphics benchmark created a fully-connected 36-agon with a radius of 350 pixels, drawing 630
vcctors or 288,364 pixels. Thus the average vector size in this benchmark was 457 pixels. Since the picture
was a fully-connected polygon, many different angles of vectors were used. TIis was intended to test the
performance of traditional vector graphics functionality. The action was repeated ten times, and the numbers
listed are the mean of ten consecutive trials.

All numbers given as vectors per second in this chapter refer to this same artificial benchmark, so they
should be valuable for relative comparisons but not absolute limits. However, since most significant
computation was done before the timed parts of this program, and the number of items in the picture is
relatively large, the intent was to measure the peak rates of adding items to a symbol and then drawing that
symbol. This would measure the rate of initially drawing a new picture.

The second graphics benchmark was intended to test the effects of using structure on a simple picture of the
kind used in a VI.SI layout editor 1421. 'This hcnchmiark drew an array of five by six NMOS inverters 193].
I:-ch of these 30 inverk'rs consisted of 26 rectangles. fIr a toill of 780 rectangles, all lilled with omIe of four
slipple pattcrns (which would appear as colors in a color implementation) representing the four NMOS layers.
First the picture was drawn using a single-level S )I: and adding all 780 rectangles individually. Tibe second
part of this test defined a contact cut symbol, then an inverter symbol, and then added 30 calls to the inverter
symbol, with only 23 primitive items in the SDF.

Although the reguhzrityficiorof this drawing (the ratio of total items divided by defined items, or 30 in this
case) is fairly high, modern VILSI designs typically have regularity factors in the same range, and the trend is
to increasing regularity 183, 841. In fact. many of the designs currently under development could never be
possible with smaller regularity factors. Independent of the structure, the resulting image was the same, about
400 pixels on a side.

-- -s --. .- - --. .
- - - -
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The text benchmark programs simply wrote characters until stopped by the user. This behavior would
occur, for example, when displaying a new page in a text editor. The characters were from a fixed-width font
with each character eight pixels wide and 16 pixels high, or 128 total pixels per character. '[his was the
standard font used by most applications except those doing specialized text display. It was developed by the
author by manually editing the output of the MEIrAFON'r type design program [741.

6.1.2 Test Configurations

'The actual structures of the protocols and programs used in the performance measurements are illustrated
in Figures 6-1 and 6-2. 'Ihe benchmarks were conducted with the following communication configurations:

Local Application running on the same workstation as the one used for display. ihe application sends V
messages directly to the VG'S. Since the application is on a separate team (address space), the V
kernel's data transfer operations are needed to move information from the application to the
VGTS' address space: no shared memory is used. '[his is illustrated in Figure 6-1a.

SUN-IKP Application running under the V-system but on a different machine, connected via Ethernet to
another workstation, and using V-System IKP. As illustrated in Figure 6-lb, this involves the
application using the same message-passing interface, but with kernels implementirrg the Inter-
Kernel Protocol.

VAX-IKP Application running under VAX/UNIX, connected via Ethernet to the workstation, and using
V-System IKP. As illustrated in Figure 6-2a, this involves the application writing to a pipe, which
is read by the V-server program, which sends messages over the network to a V kernel. 'he
workstation runs a simple program called fexecute which is necessary only because both the
VG'TS and the V-server are servers; they both are sent messages to which they reply, instead of
initiating the sending of messages by themselves.

PuP Application running under VAX/UNIX, connected via Ethernet to the workstation, and using PUP
'I'FL.NIr. Figure 6-2b illustrates this configuration. 'Ilic application uses pseudo-tty devices
(ptys) to communicate with the PUP TI.I.lNIfr server program Tel ser. 'Ibis program sends
packets over the network to the workstation, where a user PUP TlI.N-r program sends the
messages to the VGTS.

E-IP Application running under VAX/UNIX, connected via Ethernet to the workstation, and using
Internet 'ITL.N..'. 'Ibis is Figure 6-2c. 'The application again uses pseudo-tty devices to
communicate with the IP 'l'I.:,Nt..r server Telnetd. The implementation of the transport
protocol in this case is in the UNIX kernel, and a separate program called the Internet Server on
the workstation. The user 'IIi ,NEl program finally sends the messages to the VGTS.

A-IP Application running under VAX/UNIX. connected via Ethernet and ARPANI-I" to the workstation,
and using Internet 'I'll NFIL'. Iis is the same as Figure 6-2c, but with network including a gateway
andan extcnsion through the ARI'ANI.I' backbone.

Tests were conducted using standard 10 Mbit/second Ethernet unless otherwise noted. 'ests were also
pcrfirmcd on the experimental 3 Mbit/second Ethernet [411. ach configuration used workstations with both
8 and 10 Mhlz MC68000 processors. For configurations involving VAX-1l's, 750's, 780's, and a 785 were used,
and the tests were conducted during unsociable hours with correspondingly light loads. Real applications are

*.- often run with high timesharing loads, but these are hard to control for the sake of the experiments.

Evcn more difficult to control were changes to underlying software. Some variation through time inevitably
occurred in tie VG'I S, other workstation software, and host software. For example, introducing new features
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Figure 6-I: Workstation configurations tested
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Figure 6-2: Server host configurations tested

and fixing errors typically reduce performance, while casing bottlenecks found during experiments improves
performance. Although each table in this Chapter compares configurations with similar software, two
diflnercnt tabils may compare dissimilar veiions. 'Ilic detailed results in Appendix I) include the date of eachmcasuremcrnt.

6.2 Summary of Performance Results

Given the declarative nature of the VGrP, some measures of interest are:

construction rate '11we rate that objects can be added to a symbol, without any display operations.

batch rate 11wc rate that objects can be added to a symbol, and then displayed.
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incremenial rate The rate that objects can be added and displayed as each is added.

display rate The rate that objects can be displayed once they are defined.

,* Construction rate is the best measure of the peak network offered load for distributed graphical applications.
The batch rate takes into account display overhead, which is fairly independent of the network. Nevertheless,
it gives the best measure of overall graphics throughput. On the other hand, the incremental rate gives a
better measure of expected response, when interpreted as the maximum number of display transactions per
second. Display rate is another measure of response for operations such as screen rearrangement or redisplay
of defined symbols.

Unstructured vector graphics performance is summarized in Table 6-1. Additional details appear in the rest
of the tables ia this chapter and in Appendix I). In all of the tables, columns are labeled with the test
configurations listed above (local, SUN-IKP. VAX-IKP, PUP, E-IP, and A-IP). Most rows are labeled with
(speed, host. ra'c) triples, where speed is the speed of the SUN workstation processor (8 or 10 MHz), host is the
type of VAX (750, 780, or 785), and rate is one of the rates listed above (construction, batch, incremental, or
display). All r,umbers are in vectors or characters or rectangles per second, so larger numbers indicate better
performance. Results have been rounded to two significant digits, and should be taken as order of magnitude
estimates only, due to the many factors involved. However, as we shall see, even these very rough
measurements can be helpful to determine the feasibility of this approach.

Table 6-1 presents the performance figures for configurations employing the most common processors, 10
MI-I? SUN and VAX-750. As shown by the construction rate row, objects can be constructed at 440
vectors/second for applications running locally, and 380 vectors/second for Ethemet-based applications.
Overall graphics throughput, as shown by the batch rate row, is 220 vectors/second for local applications, up
to 350 vectors/second for Fthernet-based apllications, and 120 vectors/second for ARlPANI.r-based
applications. Incremental display permits 62 vectors/second for local applications, up to 87 vectors/second
for fEthernet-based applications, and 39 vectors/second for ARPANIt.r-based applications. Actual display rates,
shown in Table 6-3. arc on the order of 430 vectors/second, or .2 million pixels/second, or 5
microseconds/pixel including all display overhead.

Vectors/second
Configuration Local IKP PUP E-IP A-IP
10, 750, construction 440 380 200 220 130
10, 750, batch 220 350 200 220 120
10, 750, incremental 62 81 58 87 39

Table 6-1: Summary of graphics performance

The text results are summarized in Table 6-2. 'Throughput is 7700 characters/second for local applications.
up to 4300 characters/second for local net-based applications, and 1900 characters/second for
AR rANii-based applications. Additional details appear in Tables 6-4 and 6-5.

Cha.icters/sccond
Conlheuration ILoAal IKP PiP I'-IP A-IP
10, 780, text 7700 4300 1600 4300 1900

Table 6-2: Summary of text performance
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6.3 Feasibility Evaluation

The most gratifying conclusion is that the VGTS performs better than many systems that researchers are
currently using. Traversing the structured display files to refresh the screen is within 25% of the speed of the
bare hardware, accessed through a package of low-level graphics primitives 1221. Symbols can be constructed
at about the same rate as they can be displayed. Lastly. as shown by the incremental rate row in Table 6-1,
applications may issue around 60 EditSymbol - Addltem - EndSymbol sequences per second. This is more
than the 10-20 updates per second needed to make limited forms of animation possible at the application
level, without any need to resort to display file compilation or other special techniques. Display file
compilation is still possible in this architecture, and may be needed for graphics devices that are faster in
relation to processor speed.

Graphics nipeline Vectors/second
1. Local application - frame buffer (clever code) 570
2. VGTS -* frame buffer 430
3. Remote application -'VGTS -* frame buffer 350
4. Local application -)W .frame buffer 300
5. Local application .-7VGTS -. frame buffer 220
6. Local application -- frame buffer (straightforward code) 190

Table 6-3: Effect of graphics pipeline

Perhaps the most important concern is how the VGTS performance compares to more traditional graphics
architectures. 'Table 6-3 compares a number of different graphics pipelines" to help make this comparison.
The pipelines include the following:

1. An application writing directly to the frame buffer using the standard, highly optimized
implementation of vector drawing.

2. The vd'lS refreshing the frame buffer from a structured display file.

3. An application program on a server host using the VGlS to construct and display the picture.

4. A local application using an alternative "Window Systemn" [10]. This is an example of the more
common graphics model in which the application is in control of all drawing.

5. An application program on the workstation using the VGTS to construct and display the picture.

6. An application writing directly to the frame buffer using a straightforward implementation of
vector drawing.

SIBy comparing the performance of these pipelines, we can estimate tipper bounds on the cost of the major
architectural features of the VGTS. ILines 1 and 2 show about 25% perlornance degradation for all drawing

,,*7 overhead in the VG'I'S. The principal costs are:

* (oordiniale transfornwions. Applications specify objects in a virtual coordinate space, which
inust be translrmed into device coordinates. This could be done at SI)F creation time using a
rform o1 display file compilation, but is currently done at draw time, avoiding the use of expensive

arithmetic operations like multiplications by using shifts.

_ * Clipping. Objects are displayed only within window boundaries. Objects that lie entirely outside
of the window should not be displayed, but the parts of objects that lie partially within the
window should still appear.

* SIF Interpretation. T[he SDF structure was designed to be interpreted very quickly. With an
overhead of one pointer reference per item, this constitutes very little of the drawing overhead.

_X :2 

--.
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Lines I and 4 can be used to estimate the cost of centralized control. The W system is representative of the
-"minimalist" approach, with actual drawing centralized but few of the other features of the VGTS. Thus the

47% overhead of W can be attributed primarily to:

* Message overhead. This will be incurred whenever the graphics service runs as a separate process
from the application. Besides the time for the actual message passing and context switching, the
operations must be encoded into and decoded from the message.

" Data movement. This is the cost of copying information from the address space of the application
to the server, incurred whenever the server is not linked into each application.

Comparing line 4 to line 5 indicates a 27% performance difference when using the VGTS instead of
W. Although some of this may be due to SI)F interpretation overhead, most is due to the following VGTS

* Client stream interface. The prototype interface library encodes all graphics operations into a
stream of bytes, and uses the standard V 1/O protocol. 'Ibis allows for I/O redirection, even
among machines with different byte orders.

* Server stream interface. The prototype server implementation decodes the graphics operations
from the byte stream and calls appropriate internal functions.

* Error checking. The VGTS attempts to do most error checking, such as verifying that table
indices are within their proper bounds, at SDF creation time, so subsequent redraws will perform

-!i at full hardware speed.

* Memory allocation. Memory must be allocated to the S1DF display records for each new object.'
Once the memory is obtained from the system, this involves only a simple pointer movement
down the free list.

* SDF Sa'ing. The actual overhead for saving the display record involves storing the coordinates
and attrioutes (usually insignificant) and calculating the extent of the currently open symbol.

Despite these costs, the VGTS distributed rate (line 3) is higher than W (line 4). This shows that a significant
* amount of th2 overhead is incurred on the client, which results in a benefit from concurrency. It is, in fact,

standard protocols such as V I/O and the byte stream concept that facilitate distribution.

Note that almost all of these costs must still be incurred even if SI)Fs were not used to retain the graphics
:,.... information: the only saving would be the few microseconds to store into the display record. Of course, some

overheads could be avoided by using only one process, one address space, screen coordinates, etc. but the
resulting system would not have the advantages described in the last chapter.

Finally, comparisons of application--screen throughput show the VGTS at its worst case, since they do not
take advantage of the display file. Iven though the initial picture sometimes takes longer to appear when
using tie VGTS, once it is defined it can he drawni very quickly. For example. in response to screen
"management operations, any W-like system would require ihe application to redisplay its contenLs at the 300

vectors per second rate, while the VGTS would redisplay at 430 vectors per second, a 43% performance
advantage.

A simple qualitative measure of text performance is how the VGlS compares to standard RS-232 9600
baud terminals, which generate about 940 characters per -second. For example, consider a typical page

'' forward command in a screen editor which changes about 1000 characters. On a 9600 baud RS-232
connection this would ake about one second. With the VG'S it takes about a fifth of a second, which is fast
enough to seem instantaneous to most users.

The remainder of this chapter will attempt to show the effect of varying different parameters, and evaluate
the effects to the limited extent possible in the configurations available. These parameters include:

. . ... . . . . • ~ ............. .
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" speed of the workstation and graphics device

" speed of the remote host (if any)

" speed of the network

" choice and implementation of transport protocol

" level at which information is communicated, including characteristics of the virtual graphics
terminal protocol

6.4 Internal Factors

For many application programs with large proceksor demands, the importance of the speed of the graphics
can be insignificant compared to the importance of the speed of the application. These programs are ideally
suited to the VGTS architecture since the application can be run on a larger, specialized, high-performance
processor instead of the workstation. Thus, the major concern is when the frequency of interaction is high.

Even though the VGTS was designed for efficient partitioned operation, it is still good at local operation.
As we shall see, the most important factors affecting the performance of the VGTS are the same as those
affecting most other programs. This might be considered as unfortunately mundane, but it means that the
VGTS can take advantage of the many well-known techniques for making typical programs run faster; there
are no inherent performance reasons to prevent the use of VGTS concepts.

6.4.1 Effects of Graphics Package

One of these important factors that is often overlooked, is that for any program, most of the time is spent in
a small part of the code. In the case of the graphics benchmarks, much of the execution time was spent in the
vector or rectangle drawing function. The Bresenham algorithm, which is usually the fastest, was used to
draw vectors 1201. However, even a straightforward implementation of the fastest algorithm was much slower
than an implementation using clever coding of the inner loops of the Bresenham algorithm.

In the clever implementation. the vector drawing function compiles a custom-made inner loop for each
vector. This takes a little more time to set up for each vector, bLt this initial time is kept small by using table
look-ups. As seen in Table 6-3, using compiled vectors instead of straightforward coding yielded a 200%
improvement in vectors per second on the draw rate. However, using the VG'I S introduced some overhead
on the drawing times since it is interpreting a structured display file. Table 6-3 showed that the Si)F
overhead is very small compared to the large improvement from compiled vectors.

Unfortunately, the speedup from chosing a good algorithm and optimizing its inner loop is good for only a
one-time increase in performance. Once the best algorithm is found and its inner loops are hand-optimized,
more work will not result in more Ierlbrinance improvements. On the other hand, the cost of carefully
recoding one module or writing a Iew lines of assembly code is usually small, so the return on the investment
is good tip to a point.

6.4.2 Effects of Processor Speed

Another fairly obvious fact that is often overlooked is that the speed of an application is directly related to
the speed of the processor on which it runs. Table 6-4 compares the performance of workstations that have
two diflerent basic clock rates, but are similar in most other respects. Use of 10 M IIZ SUN workstations
instead of 8 MHz workstations yielded up to 22% improvement. hlie principal reason that the increase from

tz]
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8Mhz to 10Mhz 68000 processors did not produce a 25% increase in the performance was that the 10MHz
design required polling of the keyboard and mouse. Similarly, executing the application on a VAX-11/780
instead of a VAx-11/750 yields up to 50% improvement (see Table 6-5).

Vectors/second
Configuration IoXcal IKP PUP E-P A-IP
10, 780, batch 210 190 130 110 92
8, 780. batch 180 150 110 99 88

Characters/second
10, 780, text 7700 4300 1600 4300 1900
8, 780, text 6700 3200 1400 3600 1800

Table 6-4: Effect of workstation speed

Two of the more surprising results relate to the benefits of distributed computing. First, applications can be
expected to run faster when distributed between a VAX-780 and a SUN workstation than when run locally (see
Table 6-6). Even if construction rates are lower in the distributed case, the concurrency from the use of two
processors resulted in higher rates for both batch and incremental display. Second, some applications execute
faster using a VAX-785 on the ARPANTr than using a VAX-750 on the local net (see Table 6-7). Since the
ARPANFn" is substantially slower than the Ethernet and network communication in general is slower than local
communication, the conclusion is that CPU speed is the dominant factor in this instance.

Vectors/second
Configuration IKP PUP E-IP
10, 780, construction 510 210 170
10, 750, construction 340 130 110

Characters/second

10, 780, text 4300 1600 4300
10, 750, text 4100 1400 2300

Table 6-5: Effect of remote host speed

Note that Table 6-4 and 6-6 contain batch rates, to emphasize overall performance. Table 6-5, on the other
hand, contains construction rates, to emphasize the performance of the processor executing the application.
However. regardless of where the application executes, the workstation is always required to do some work,
namely, to maintain and display the graphical objects. 'Ilerefore, performance is more sensitive to
workstation speed than to remote processor speed. For example: whereas a 25% increase in workstation
speed results in almost linear speed-up. a 100% increase in VAX speed results in at most 50% speed-up as seen
in Tables 6-4 and 6-5. Note that Tables 6-4 and 6-5 were constructed with early versions of the protocols-
later changes to the protocols increased the sensitivity of III to server host speed, but decreased the sensitivity
of I KI and PUP.

Vectors/second

Configuration Local E-IP
10, 780, batch 220 380
10, 780, incremental 62 92

Table 6-6: SUN vs. Ethernet-based 780

One might conclude from these measurements that there is little reason to distribute applications, since

l, .. ..... ... ... .. ... ... .. ......- ".. ..- "..:.'?. . ... -..- '-.--,
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Vectors/second
Configuration E-IP MP
10, 785, construction 160
10, 750, construction 130

10, 785, batch 140

10, 750, batch 125

Table 6-7: ARPANET-based 785 vs. Ethernet-based 750

batch rates arc comparable between local and remote applications. Performance should be improved as two
processors are used. However. our benchmarks make no significant computational or database demands that
would take advantage of faster hosts. Moreover, as mentioned in Section 1.2.2, some applications simply
cannot run on the workstation, due to memory or language requirements, for example. Non-graphical
applications can be expected to depend more on disk or operating system performance, softening the impact
of processor speed. On the other hand, compute-bound applications, including any that use floating point,
arc impacted more heavily by host processor speed.

6.4.3 Effects of Graphics Hardware

Table 6-8 gives the effect of two measured frame buffers. The first line in the table rcfcrs to the original
frame buffer which simplified graphics primitives by providing bit-shifting hardware. il'he second line refers
to the frame buffer in which display memory is byte-addressed like all other memory. The second frame
buffer is about 30% slower on vector drawing than the original frame buffer. However, creation is faster on
the Sun-2, due to a slightly different I/O architecture. Although the Sun-2 is still about 15% slower for the
total local batch rate, remote batch rates are sometimes higher due to CPU saturation.

Vectors/second
Configuration Draw Create Batch E-IP
Sun-1, 750 430 440 220 220
Sun-2, 750 290 470 180 170

Tale 6-8: Effcct of frame buffer

6.5 Protocol Factors

The nature of the applications and of the information they communicate among their distributed parts
make the network behave differently from what might commonly be expected. h'lc use of high-level graphics
protocols reduces the degradation that is experienced between dilferent bandwidth networks. This can
influence ihe choice of network protocols since the perlbr)ance penally ol'accessing a high-perlinnance host
over a long-haul inicrnetwork insicad of a less powerlul host located o)11 a local network may bc oluweighed
by the difference in host capabilities.

From another point of view, the higher-lcvel protocols tend to increase the CPU cost of fast
communication. 'l'his may be an advantage, due to the decreasing costs of CPUs compared to
communication, but also means that less of the CPU is available for other tasks. In concrete tcrms, the
protocols are "high level" since they deal with graphical objects like lines and polygons instead of low-level
bitmap operations, and they take advantage of structure.

-:
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6.5.1 Effects of Structure

As discussed in Section 3.4, the VGTP allows objects to be defined in terms of graphical primitives such as
vectors or rectangles, or in terms of other objects. Once the objects are defined, they can be made to appear
on or disappear from the screen with short commands of only a few bytes. The performance advantages of
retaining the display files on a dedicated workstation, introduced in Section 5.1, have been known for some
time [881. The following tests were performed with a program that used the structuring facilities of the VGTS
to create 30 instances of a symbol consisting of 26 rectangles each.

The results for the structure benchmark are given in Table 6-9. The first thing to notice is the very low rate
for incremental performance, especially over long-delay networks like the ARPANET. By batching and
pipelining the operations, performance increases by a factor of 7 for local operations, 30 for Ethernet
operations, and 40 for ARPANE'f operations. Using structure instead of an unstructured list of primitive items
increases performance again by factors of 3 to 4 for both local and remote operations.

Rectangles/second
Configuration Local E-IP A-IP
10, 750, incremental 41 5 2
10, 750, pipelined incremental 61 66 36
10, 750, batch unstructured 310 180 81
10, 750, batch structured 1070 670 370

Table 6-9: Effect of structure

Some other interesting observations can be made fiom Table 6-9 that reflect the value of batching and
structure. First, the time to define and display the picture for a local application was about 1 millisecond per
item. 'Ibis is roughly the time to perform a local Send - Receive - Reply sequence in the V kernel [311, so any
protocol that uses a message transaction for each item will be slower. Secondly, it is raster to run this
benchmark over the ARPANIEIT and use structure than it is to run the same program locally and use
incremental or unstructured display. The latter is comparable to traditional graphics systems. It is also faster
to run the program across the Ethernet and use structure than it is to run the program locally, even with
batching.

Structure introduces a slight amount of overhead, since the VGTS must trace through the symbol data
structure. However, in this benchmark the structure interpretation introduced an overhcad of about 20
milliseconds out of about 900, or less than 3% of the local draw time. 'Ihus there is little performance
advantage to use a segmented display file instead of an arbitrarily structured one. By using a linear list instead
of a linked list, display records could be 16 bytes instead of 20. or a 20% savings in memory. Unfortunately
this would make insertion and deletion much more difficulL Moreover, the SDF representation is already
quite concise, as will be shown in Section 6.5.3.

" 6.5.2 Effects of Batching and Pipelining

Comparing the batch and incremental rates in Table 6-1 as well as Table 6-9, shows the importance of
batching. The original implementation of the VG'TP employed a return value for each operation. In the
current implementation operations are batched so that values are returned only after an entire sequence of
operations (such as all changes to a given symbol) have been performed. This change reduced network delays
substantially, yielding performance improvements of up to factors of 301

The first two lines of Table 6-9 give the effect of another important change to the VGTP. By removing the
* return values from the lditSynbol and EndSymbol operations, even incremental operations could be
, pipelined, resulting in much more concurrency than the "stop-and-wait" protocol resulting from return values

.1
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on each transaction. The reduced message traffic caused an increase of 50% for local operations, and increases
of factors of 10 to 15 for remote operations In fact, remote incremental operations are almost always faster
than local incremental operations due to this concurrency.

6.5.3 Comparison to Bitmap Protocols

Many approaches to graphics within a distributed system use protocols based on bitmap manipulation.
Unfortunately, bitmap protocols can be inefficient in both their bandwidth and memory utilization. By
reducing the length of the descriptions of graphical objects, they are made independent of the structure of the
bitmap as well as being smaller in both transmission and storage.

The advantages of the SDF for memory usage are indicated in Table 6-10. In the vector benchmark, the
SDF represented the fully-connected polygon with 20 bytes per item, or 12,600 bytes. This compares to the
800 by 800 bitmap area, which would take 80,000 bytes. In practice, most pictures are even less dense than
the fully-connected polygon, so the advantage would be even greater. In particular, the SI)F approach has
the advantage as long as there are more that 20 bytes of bitmap space for each item in the SI)F. The rectangle
benchmark shows that even without using structure, a factor of about two in memory savings is possible.
Using structure, the 900 bytes used by the SDF is a factor of 37 less than the space for the bitmap. Similar

'-$ large improvement factors in network bandwidth requirements will be discussed in Section 6.6.

Bytes of memory used
Benchmark SDF Bitmap
vector 12,600 80,000
rectangle, unstructured 15,600 34,000
rectangle, structured 900 34,000

Table 6-10: Effect of SDF on memory usage

6.5.4 Effects of Transport Protocols and Their Implementations

As noted for Table 6-5, three different transport protocols were used, with significantly different
perforrunce results. "he V-system supports both a local protocol and two general inter-network byte-stream
protocols. The local protocol provides an interprocess communications facility between V-system processes.
The two general protocols are the Xerox PUP family implemented through the RTP/lSIV level, and the ARI'A
Internet protocol family implemented through the TCP level. User THl.NI programs exist on top of both.
The network configurations were illustrated in Figure 6-2.

Unfortunately it is very hard to compare only the effect of protocol design, because of many
implementation issues that vary betwec, the protocols. For example, the implementation of PUP lISP did
not use any of the windowing features available in the protocol, resulting in inuch lower performance thian the
IP. More iiportant. the packet size tsed in the IKII implcinetatioi wits 1024 bytes, while hoth I'l Pand IP
used packets of I0I or 200 bytes. On the other hand, the incremental rates fbr the I K11 experiments were very
poor,. due to the fact that a UNIX server process was polling every few seconds for Output from a pipe. while
the other protocols were interrupt driven.6'lhus the implementation of the protocol may have a greater effect
that any properties inherent in the protocol itself.

Fortunately we were able to experiment with different implementations of the same protocol. During the
course of our experiments, there were two major implementations of the ARPA Internet Protocol available for

Gl e UNIX V-scrvcr could be modified in 4.2 to use the select syslem call 1681. which would eliminate this delay.
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VAX/UNIX systems. 'The first was done by Bolt, Beranek and Newman (BBN) and was for the 4.1 version of
UNIX [611. The second was done by the Universi'ty of California at Berkeley for the 4.2 version of UNIX [681.
The relative performances of these two implementations of the same protocol are given in table 6-11. The 4.2
implementation is 1.4% faster for batch construction and display rates. The difference in peak throughput
rates is even more significant, but even this higher rate is several orders of magnitude below the actual
bandwidth of the network. Possible reasons for this will be discussed in the next section.

Vectors/second
4.2 4.1

Configuration IP/TCP 1PfCP
10, 750, construction 140 110
10, 750, batch 93 81
10. 750, incremental 7.8 4.8

Table 6-11: Effect of TCP implementation

'rable 6-12 indicates the effect of changing the relative priorities of the application program or the TEl NET
server program. This test was done using the PUP protocol on a local 10 Mbit/second Ethernet. The first
column gives the results for normal operation. For the second column, the operating system gave priority to
the "l'nl.NI-r server program. Batch performance actually decreased, since more network packets were sent.
For the third column, both the application and the TI.t.NE-r server were given priority, which increased both
the batch and incremental rates. However, as shown in the last column, the best performance was obtained by
giving priority to the application.

Vectors/second

Telser &
Configuration Normal "'elser Apolication Armlication
10, 750, batch 170 160 190 200
10, 750, incremental 47 48 58 58

Table 6-12: Effect of Process Priorities

Another interesting comparison is between remote execution on a timesharing host and execution on
another workstation. Table 6-13 displays this comparison. 'lie construction rate is about the same on the
VAX/UNIX system and on the V-System. The incremental rates on the VAX/UNIX implenenttion are very
poor without pipelining, due to the high delay. Note. however, that the total batch rate and the pipelined
incremental rate are much higher on the VAX than on another workstation. This is due to the fact that there is
actually little concurrency in the remote workstation case, due to the synchronous VIKP messages. Much
better performance could be obtained by replying to the message bef!,re it is processed, instead of after the
operations are performed.

Vectors/second
SUN VAX

Confiauration IKP IKP
10, 750, construction 380 380
10. 750, batch 190 350
10, 750, incremental 29 4.6
10, 750, pipelined incremental 44 81

%N ' Table 6-13: Effect of lKP implementation

,5,
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6.6 Network Factors

The use of networks implies both limitations in bandwidth and increased delays. All of thc above factors
(and our design and implementation) combine to render the actual network bandwidth insignificant. Table
6-14 shows that although a 3 Mbit/second Ethernet is about 60 times faster than the 56 Kbit/second links
used in the ARPANI'r, using a backend host on the local network yields less than a 50% performance
improvement over using a backend host on the ARPANIETI8 . Moreover, there was very little measurable
performance difference between using the 3 Mbit/second experimental Ethernet rather than 10 Mbit/second
standard Ethernet [44]. The column labeled ElO-IP refers to standard 10 Mbit/second Ethernet. Although
the Ethernet is about 180 times faster than the links used in the ARPANET, the Ethernet construction rates are
less than twice the ARPAN.. rate. In fact, most of the difl'erence in the total batch rate is due to the delay of
the ARP,I..I' and intervening gateway, not any bandwidth restriction. Earlier implementations of the
protocols had even less of difference.

Vectors/second

Configuration E-IP EIO-IP A-IP
10, 750 4.2, construction 220 230 130
10, 750 4.2, batch 210 220 120

Table 6-14: Effect of network bandwidth

These results can be attributed primarily to the level of communication as discussed in section 6.5.1, and the
conclusion that processor speed is the usual bottleneck. "['his is consistent with other measurements of
Ethernet performance 1120] that show very low utilization of the available bandwidth of the Ethernet, and
comparatively long delays on the ARPA Network. Thus, these systems rarely approach the limits described in
analytical studies that concentrate on performance under heavy loads [145J. In fact, these protocols can be
used on vc:y low-bandwidth communication links.

Each AddlItem call sends 20 bytes of data, so a construction rate of 230 items per second (the Ethernet load
given in Table 6-14) corresponds to only 4600 bytes per second, or about 40 Kbits/second. about 0.4% of the
Ethernct' bandwidth. )ue to the small amount of data, graphics could even be possible over standard speed
telephone lines. For example, at 1200 bits/second, a peak rate of 7.5 items/second should be possible. To test
this, tie experiment was run successfully on a workstation over a 1200 hits/second telephone link. Several

%other rates were tested using point-to-point RS-232 connections at various speeds, with the results given in
Table 6-15.

Items/second
Configuration 1200 2400 4800 9600 E-IP
10, 750 4.2. construction 7.4 14 26 54 166
10, 750 4.2, batch 6.2 12 23 46 131
10, 750 4.2, structure 84 142 230 320 380

-I. Ille 6-15: I'ffct of point-to-point communication rates

For the structure benchmark. even at 1200 bits/second, the measured creation rate was 7.4 items/second,
very close to the maximum 7.5 calculated above. This rate is slightly less than linear in relation to the

. bandwidth, indicating that even at low speeds the CPU can be a factor. Moreover, the total rate when using
structure was 84 items/second at 1200 bits/second, which is twice as fast as running the program locally with
incremental drawing (the first entry in Table 6-9). Structure and lack of significant delays also makes this

B In flct. the experimental Ethcrnet Ls really about 2.93 Mbit/sccond. Thc differce between this and 3 Mbit/sccond is greater than

the 56 Kbit/Acond of the ARPANIr link!

... ......-.... :-..-........................................ .....................................................
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structure rate faster than the batch rate for the ARI'ANLEr (the last entry in 'Table 6-9). Significant delays can
even be seen in the local Ethernet III results, as given in the last column of'able 6-15. The 9600 bits/second
structure rate is only about 15% slower than using Ethernet, even though Ethernet has a raw bandwidth a
thousand times greater.

6.7 Human Factors

Thc actual VGTS could be instrumented to take data during production use. This information would
record the frequency of operations and the corresponding response time. A "user simulator" could be written
to simulate a real user's command sequence, with suitable randomness. This could be used to tune the
performance of the VGTS to match the user profiles gathered in the above experiments. More elaborate
instrumentation results would be very interesting, but are beyond the scope of this thesis.

Obiects Time Rate Bitmao SDF
Maximum 365 1370 266 40K 7.3K
Mean 116 485 234 21K 2.3K
Median 101 430 235 19K 2.0K
Minimum 33 160 203 13K 0.7K

Table 6-16: Instrumentation data

Instead, the illustration editor used to create the diagrams used in this thesis was instrumented to measure
both response time and memory usage. The detailed mcasurements are given in Table 13-4 in Appendix D,
with a summary given here in Table 6-16. This table gi~es the maximum, minimum, median, and mean for
each value. These tables list the number of items in each figure, the time for display in milliseconds, the
resulting rate (including both creation and display) in items per second, the memory that would be needed to
store the bitmap (in thousands of bytes), and and the memory used in the Si)F (also in thousands of bytes).
The average times were under halfa second, resulting in quite good response. The memory savings averaged
around a factor often for using an SDF instead of a bitmap.

6.7.1 Levels of Responses

Unlike other studies which consider throughput the factor to be optimized, we have concentrated on
optimizing response time. Experiments have shown that users prefer systems with low variability of response
time, even if the throughput is slightly lower [98].

One natural division of functions from a linguistic point of view is into the following three general
categories [15 11:

Lexical These operations require immediate user feedback, on the order of 50 milliseconds. 'Ibis rate
(20 evenLs/second) corresponds roughly to an upper bound on the speed of very lIst typists
(keystrokc/second).

Syntactic 'lbcse operations involve a single syntactic operation, and can take up to 0.5 to 1 second.

Semantic Major operations can take on the order of tens of seconds without the users losing their trains
of thought.

Clearly all lexical interactions should be performed on the workstation. In fact, the VG'S line editing and
cursor tracking account for most of these lexical actions. Syntactic actions include screen management and
selection feedback. In the VGIS these operations are typically performed outside the service, but in
programs residing on the workstation. Syntactic responses can even be done across the network if the load on

i?
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the remote host is not very high. Larger-scale semantic operations, like loading and running large programs,
searching central databases, or compilation, are typically done on remote server hosts or distributed between a
server host and the workstation.

6.7.2 Keystroke Data

Many studies have been done for text editors to determine the common operations [26, 57]. These studies
can bc extended to graphics, but are also valuable in their own right since a large part of any user's interaction
is still textual. The main conclusion of these studies is that the majority of the users' time is spent doing very
simple repetitive tasks. Thus we concentrated on making these few simple tasks faster by taking advantage of
the power of the local workstation.

6.8 Discussion of Results

*: To summarize our findings, the primary factors affecting performance of our distributed graphics
applications are, in approximate order of importance:

1. Speed of the workstation.

2. Speed of the remote host, if any.

3. Level of communication, as determined by the virtual graphics terminal protocol.

4. Bandwidth of the networks employed.

Essentially the same observations hold for text. Note that these obscrvadons relate to the degree of
performance improvement relative to the degree of change in the indicated parameters. Thus, a 50%
performance improvement due to a 200% increase in processor speed could be considered relatively greater
than a 300% improvement in perfoirmance due to a 6000% increase in network speed. ' he importance of
CPU speed and amortizing communication costs over large buffers was a major conclusion of one of the few
other similar studies 185).

It is relatively easy to rate the sensitivity to hardware factors. Software factors are another matter; it is easy
to measure die absolute performance improvement resulting from a change in software, but quite difficult to
measure de cost of the software change. Nevertheless, certain conclusions will be drawn based on available
information. Also note that there are limits beyond which changing one factor will not affect performance;
for example, a CPU-bound application running on a remote host will be little affectcd by an increase in
workstation speed.

CPU speed rates at the top of the list simply because desired specd-ups can be achieved almost indefinitely
by substititing more powerful workstations and backend hosts. Continuous improvement is not possible with
network protocols. IK V. 1br example, provides as good performance on the local net as can be achieved.
Another way of saying dis is that network protocols are limited by the available hardware, and tie most
important piece of hardware is the CPU.

6.8.1 HardwareFactors

As workstations become more powerful, one might think that oflloading functions from hosts to the
workstation means that slower backend hosts can be used. In reality. faster hosts arc required to keep tip with
the increased demands of the workstations. On the other hand, one might think that as networks become
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faster, communication is cheap. Unfortunately, network interfaces have not kept pace with bandwidth, so
that many network operations remain CPU-bound. In both cases, the offloading and increased bandwidth
may allow more users to share the same resource, but do not increase the performance for individual users.
Hence, fasier hosts are needed, not slower ones.

Similarly, network controllers are now being marketed with microprocessors that are intended to offioad
task3 from thc main processor. Our experience has been that such controllers are usually slower, not faster,
than simpler and cheaper controllers that perform fewer finctions but use fixed logic at a higher speed.

With respect to network bandwidth, sensitivity is directly related to communication requirements.
Conmunications requirements are inversely related to the frequency of communication and the amount of
information transmitted, both of which are reduced by the techniques discussed above. Therefore, the
remarkable insensitivity of our applications to network bandwidth implies that they are quite sensitive to the
"level" of communication.

6.8.2 Software Factors

This high level of communication is due to the Virtual Graphics Terminal Protocol design. In particular,
the ability to batch many operations into a single update using a small number of bytes provided large
increases in performance.

It is hard to make direct comparisons about network protocols independent of their implementations. For
example, a protocol inside the kernel of an operating system is usually more responsive than if it is
implemented on top of the kernel. Of course, a processor runs at the same speed both in kernel and user
state. "lbe increased responsiveness comes with the cost of increasing the size of the (usually always resident)
kernel and the related difficulties of debugging at lower levels.

In our particular case, despite the fact that the PUP protocols are simpler than the ARPA Internet protocols,
ARPA Internet-based "ITNI:r connections can sometimes run about twice as fast as PUP-based ones. This is
attributed primarily to the fact that PUP is implemented as an application outside the Unix kernel whereas
the ARPA Internet protocols are implemented inside the kernel.

For very time-critical functions such as network communications, mcssages and process context switches are
expensive even in systems designed to provide very fast message passing and light-weight processes. 'T7he
interested reader should refer to [821 for a more detailed analysis of the networking issues which are not of
direct concern of this thesis.

6.8.3 Fitting the Model

The experiments given in this chapter give some estimates of the times used in the models of Section 5.3.
For example, peak pipclincd incremental rates are about 60 interactions per second, or TNeOuI + TNeIn of
•about I/,th ,cond. I Ithis is less than the swapping tines '. + then the workstation/host

Swipl Sw:11101t
split will be faster. even with coniparable computation times. most or today's personal computers take much
longer than 1/60 second to swap an application out and back in. The advantage will increase with more
powerful hosts and less powerful workstations.

Of course, care must be taken when generalizing these results to other programs. These benchmarks were
intended as communication-intensive limits, since they only do graphics and no real computation. More
sophisticated applications could be expected to achieve even larger speed-ups when distributed. The
instrumentation results show that the synthetic benchmarks are not fundamentally different from actual

* applications, except for slightly slower rates due to the computation by the application. No claim is made that

'4
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these results allow us to predict the performance of an arbitrary program. On the other hand, a protocol that
- provided one hundred items per second in our experiments will probably be faster that one that provided ten

items per second. More analytical work needs to be done to accurately predict performance, but these results
provide a start.
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-7-
Conclusions and Future Work

The previous chapters described the motivation for, the design, implementation, rationale, and
measurements of a simple distributed graphics system. This Chapter draws a number of conclusions from this
work, and presents possible extensions for the future.

7.1 Structured Display Files and Virtual Terminals

The first important conclusion is that the structured display file technique can be combined with the virtual
terminal concept, resulting in an architecture for distributed graphics. The virtual terminal concept, described
in Section 2.3, provides the user with access to multiple simultaneous distributed resources. The Virtual
Graphics Terminal Server mediates between application programs that share a workstation dedicated to a
single user.

The declarative nature of structured display files outlined in Chapter 3 reduces communication, and allows
higher-level short circuiting. The performance and decreased memory utilization motivations for structure
given in Section 5.1.1, are supported by the measurements in Section 6.5.1. In particular, SDFs can yield both
higher performance and lower memory requirements than traditional graphics systems. These advantages
increase ats pictures become more structured, and applications perform more incremental updates. The
VGTS performs cursor motion, screen management, and keyboard echoing internally (as described in Section
5.1), resulting in a short-circuit of the interactive response cycle for these common operations.

7.2 User and Program Interface Separation

The VGTS architecture first specified only the application program interface for defining and modifying
objects, it Section 3.4. A separate user interface for viewing those objects was then specified in Section 4.4.
'The prototype implementation rigidly enforced this distinction: applications could not inquire the size of the
screen, Ibr example, and adapt themselves accordingly.

The resulting principle advantage is absolute device independence and portability, which is vital for the
reuse of software with rapidly-changing workstation hardware. Concern for the portability of the prototype
saved reimplementing most of the modules described in Section 4.1.1 for new devices, such as the Sun-2
frame buffer. The principle disadvantage is that customization is made more difficult. Section 5.6 discussed
when customization by both users and programmers is desirable, but also mentioned reasons not to allow
arbitrary customization.

7.3 Transparent Distribution

Although distributed graphics is possible with the SIF approach. it still may not always be desirable. For
example, in many cases running the benchmarks locally was raster than running them distributed.
Unfortunately, for the reasons given in 1.2.2, it is not always possible to run all applications on the
workstation. Even if the necessary resources arc available as an option for the workstations, they are typically
too expensive for widespread use. In other words, even with today's advanced hardware, we still need larger
virtual and physical memories, and faster processors, at lower prices.

The protocol uscd for defining objects (the VG'IP) was extended transparently across networks using
several transport protocols, described in Section 4.3.5. The same source program can be compiled and linked

k I
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for any of a number of environments, and the same binary can be accessed through three different transport
protocols. Distribution allows applications to run on thc best suited computational resource, and use multiple
resources to achieve concurrency. These programs were actually used, so performance constraints were
stringent. Results such as those in Table 6-6 show that distributed operation was often faster than local
operation.

7.4 Techniques to Improve Performance

The tables in Chapter 6 show that VGTS performance is close to the best possible speed. In the best case,
the VGTS can give much better response than systems that do not retain any information on the structure of
the image, or allow for concurrent operation. More instrumentation of applications would provide useful
information, but is beyond the scope of this thesis. The measurements presented in Chapter 6 already
indicate several ways that performance can be improved.

* 7.4.1 Protocol Design Techniques

Once the decision to distribute is made, a more subjective decision is what and when to distribute. In our
experience, a few simple operations and applications can be done locally, such as text and illustration editors,
and the resulting average performance is adequate. The simple but powerful modeling facilities provided by
the VGTS allow this short circuiting.

The use of Structured Display Files also means that once objects are defined, instances of them can appear
or disappear with a very small amount of communication. This makes the protocols very insensitive to
network bandwidth, as shown in Tables 6-14 and 6-15. Since delay causes more restrictions than bandwidth,
many simple operations should be batched together for each interaction. Return values should also be
eliminated whenever possible to increase concurrency by allowing pipelining to occur. Although direct
quantitative comparisons could not be made between the factors affecting performance, batching certainly has
a very important effect.

7.4.2 Software Structuring Techniques

One interesting rule of design learned from the VGTS implementation experience was to use software
structuring mechanisms only for die appropriate purpose:

. Use separate processes where separate threads of control arc needed, otherwise use one process.
For example, the main part of the VGTS consists of many modules but only one process.

e Use teams (complete address spaces) for programs that.should be executed as a unit. Partitioning
the V(;IS into separate teams caused a great increase in memory consumption, due to the
common library functions.

* Use modules for parts or a program that can be separately compiled. A direct procedure call
interface was still lIster than other kinds of communication.

Much performance can be lost if one of these partitioning mechanisms is used improperly. Even on a system
like V where mcssiage passing is fast, it is still slow compared to a procedure call. In particular, Table 6-9
shows that the drawing rate can approach one item per millisecond, which is about the samc time it takes to
perfonn a mes.ge Send/Receive/Reply cycle. 'Ibus each message should cause many lower-level actions
instead of just one, reiterating the importance of batching.

,V
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7.4.3 Internal Performance Tuning Techniques

Once hardware and protocol decisions arc made, performance can be improved by using standard software
tuning tcchniques such as inner loop optimi7ation and increasing buffer sizes and blocking factors. In fact,
reasonable performance can be obtained using the standard transport protocols compared in Table 6-1,
without resorting to special-purpose protocols and incurring all the problems of being non-standard. On the
other hand, the use of structure and proper batching and buffering strategies must be done at every level, to
avoid bottlenecks.

7.5 What Can be Learned

In light of the VGI'S experience, we can evaluate some aspects that were later determined to be
unsuccessfil, for the benefit of fiture designers:

S'lle declarative nature of the VGTP and lack of a simplified interface library discouraged
application programmers accustomed to more procedural graphics systems.

* Application programs developed their own conventions since there were few common user-
interface libraries.

* Encoding graphical information in the same stream as text at the lowest level did not allow
redirection of graphics commands into a file or background graphics programs.

* The lack of raster operations in the programmer's interface discouraged the use of the VGTS for
image processing applications.

*Several minor device-dependencies in the implementation were not made apparent until ports
were actually attempted, due to lack of a well-specified device interface.

*'he close coupling of the view manager to the rest of the VGTS discouraged attempts at
customization through user profiles.

Most of these problems can be easily overcome by the work described in the next section.

7.6 More Open Questions

The VGTS effort raised more questions than it answered. The following is certainly not an exhaustive list,
but it should give an overview of possible future topics in this area.

7.6.1 Integration with Editor

One u.,ftl function in many window systems is the ability to select text (or other data) from one place and
sluffit into another. )uc to the simple structure of text, this would be relatively easy to add for clients using
the byte-stream terminal emulation interface. For advanced graphical objects. S)F and higher-level
interfaces could be used. Unfortunately this requires common data representations at the applications level,
beyond that with which the current VGS prototype is concerned. Since sonic performance and flexibility is
already lost by enforcing the level used by the VGTS, getting applications to agree on even higher levels could
be quite difficult. On the other hand, there are many potential benefits from even higher levels of
standardization.

S. " - - . . -
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7.6.2 Handling of Attributes

The VGTS used a limited number of attributes for its primitives, most stored as a small integer used as a
table index to get the actual value. This approach, similar to bundled attributes of GKS, has proven to be
simple yet powerfil. However, in the VGTS most values arc predefined at compile-time; they should be
dynamically defined at run-time. For example, for text fonts the DefineFont ftnction returns an attribute to
be used in subsequent Text items. Similar functions should be available to dcfine colors, fill patterns, and

1line styles.

in keeping with the declarative approach of the VGTS, each item has its attributes explicitly specified. For
example, if a symbol contains 500 blue lines, then eacti line contains the information that its color is blue.
Tlhis is in contrast to the approach taken by traditional graphics packages. which would have a command to

-set the current line color to blue and then draw 500 lines. Although the traditional approach requires
additional state during interpretation of the SDF, it would allow the inheritance of attributes from containing
environments. An open issue is the value of this inheritance capability.

7.6.3 Other Interfaces

If VGTS allowed inheritance of attributes, then it could support an interface compatible with G KS. The
application could still take advantage of the structuring capabilities of the VGTS if the interface is upward-
compatible with GKS, in the manner of Steinhart [130]. Such a redesign is in progress at the time of this
writing.

Other virtual terminal emulators could provide, for example. NAPIPS virtual terminals as another possible
interface. These interfaces could be implemented as an alternative library package, retaining the current
message interface. A new message interface could be designed, with the conversion to byte-streams done in
the "'1N'NLI" programs. The relation between the V-System concept of file instances and VG'S objects such
as SDF, VGT, and VGT group could be made cleaner.

7.6.4 Porting the Implementation

At the time of this writing, although two totally incompatible frame buffers are supported, the VGTS has
not yet been fully ported to another graphics device besides SUN workstations. Many potential graphics
devices were either too expensive or provide too low a performance level to adequately support an
implementation of the VG'S. A port is currently in progress to the VAxStation, which should prove that the
implementation is independent of processor architecture as well as graphics architecture.

7.6.5 Multiple View Surfaces

Another aspect of the design never fully exploited was the use of multiple screens per workstation. A
typical con figtin might have al color scren fi)r computer aided design, and a hlack and white screen for

general textual interaction. Applications should run with no modifications on such a configuration. A natural
extension of the user interface (used on other systems with multiple view surfices) would have one cursor for
both screens. When the cursor is moved past an edge on one screen, it appears on the edge of the adjacent
screen.

Most of the current VGTS implementation could be used with multiple view surfaces. The internal data
structures for views could easily be augmented by a pointer to a frame buffer descriptor structure, containing
pointers to the primitive functions to operate on the particular frame buffer. This approach is similar to the
pixrect specification by SUN Microsystems 11231. In fact, pixrca would be a good candidate for this layer,

'%.q,
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were it not proprietary to a single manufacturer. Another candidate would be one of the Virtual Device
Interface standards, or normalized device coordinates at a well-specified internal interface.

7.6.6 Extended Functionality

Sincc the VGTS evolved in an environmcnt rich in system programmers, thcre was no shortage of suggested
enhancements, including three dimensional SIFs, color, floating-point, image processing, and general
coordinate transformations. Currently the few programs that use floating point or three dimensions execute
on server hosts in batch mode. because our workstations do not have adequate numeric performance. The
batch programs convert to two-dimensional integer coordinates that are then displayed by the VGTS. Simple
animation is possible in the current implementation, by defining successive stages as symbols and then rapidly
changing between the symbols. Future floating point processors in workstations may make it possible to
absorb some of these functions into the workstation's viewing service.

A fourth dimension, time, could also be considered for actions like animation or nubber banding. One
approach would be to add graphics primitives that would cause changes to the screen, but not be stored in an
SI)F. These would be similar to temporary (or non-retained) segments in the Core, but would conflict with
the declarative nature of the current design. More attractive would be to specify rubber banding or trajectory
as attributes of objects.

7.6.7 View Adapting Objects

One principle advantage of the up-call approach taken by most object-oriented window systems is the
ability for graphical objects to adapt to their viewing environment. For example, when a view becomes
narrower, document paragraphs could be reformated to break into correspondingly narrower lines. Similar
functionality could be added to the VGTS in several ways. The current VGTS includes a function to return
the size specified by the user for a default view. Tlhis could be extended to allow querying the view for its size,
but requires some kind of asynchronous notification which would be hard to cleanly add to the architecture.
The notification could be done on the basis of VGTs instead views, since VGl's are already visible objects to
clients, and multiple views are allowed per VGT. However. in the prototype a graphics VGT has no size, and
a text VGT is a fixed size once created.

A more promising approach is to specify the viewing constraints as additional attributes of the object. For
example, the current prototype implements "reference lines", displayed as lines with text labels drawn near
the edge of the views in which they appear. Thus the same object in the same VGT can appear differently in
different sized views. ihe key problem is to design a method of specifying these viewing constraints with
more gencrality but retaining adequate performance at viewing time.

7.6.8 View Manager Separation

One of the most requested areas of custonization was the view manager. The VGTS architectural
distinction bctwcen the application program's interface and the user's interface means that userS should be
able to experiment with alternate or parameterized view managers without affecting any application
programs. For example, tiled and overlapped viewports should both be provided. In addition, work needs to
be done to develop more advanced command interfaces on top of the VGTS.
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7.7 Final Evaluation

Even with the deficiencies noted in Section 7.5. few other systems provide as powerful a set of features on
equivalent workstations. The VGTS approach is well-suitcd to environments under the following conditions:

1. Workstations can provide adequate user response without requiring performance extremely close
to hardware speeds.

2. Computing resources much more powerful than workstations are available across some kind of
network.

3. Portability and device independence is important due to a heterogeneous or rapidly changing
hardware base.

4. Productivity of potential users could be increased by providing multiple simultaneous contexts.

5. Application programs deal primarily with incremental changes or structured pictures instead of
. producir.g images to be only viewed once.

As a resulL the VGTS is in daily use at Stanford and several other sites. Moreover, it has been valuable for
the performance measurements and design studies described here.

.. . .
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- ppendix A -
Glossary

This work encompasses three different subfields of computer science: Operating Systems, Networks, and
Computer Graphics. Unfortunately some ternis hac different meanings in more than one of these fields.
This glossary should help to provide one set of consistent definitions. Many of these definitions are adapted
from the literature l61. 64]. while others are particular to this work. For more details, refer to te references
provided in the bibliography or the text section -.s indicated.

Amis A system developed by Robert Sproull at Xerox Palo Alto Research Center [127] to allow an
Interl isp program running on a timeshared computer to perlorm raster graphics operations
on a workstation.

ANSI American National Standards Institute. In the United States such standards are voluntary
only. Computer related standards can be obtained from the X3 Secretariat at the Computer
and Business Equipment Manufacturers Association in Washington 1). C.

, ARPA Advanced Research Project Agency of the United States Department of Defense. An agency
that funds major computer science research projects, including the ARPANET, a nation-wide
computer network [1061.

APA All Points Addressable. IBM terminology for a bitmap raster graphics device.

Backend 'he part of a computer system (hardware or software) that does not interact with a user. It is
separated from interaction with the user by the front end. For hardware, backends can be
optimized for batch operation, favoring throughput over response time. For software,
requests are made from other programs or software modules instead of directly by the user.

BCPL Basic Cambridge Programming Language. A very simple language with control structures
but no data structuring facilities.

BitlBlt Bit-boundary BLock Transfer. 'The operation of moving blocks of bits from and to arbitrary
locations within computer words.

Bitgraph A terminal built and marketed by Bolt Beranek and Newman of Cambridge, Massachusetts,
based on an MC68000 processor and a bitmap display.

Bitmap A digital image memory containing a description of each of the addressable pixels in a raster
display. The color or intensity level of each pixel is directly determined by the value of a set
of bits in the bitmap.

Blit A terminal built at Bell ILaboratories based on an MC68000 processor and a bitmap
display 1721. A reenginecred version is being marketed under the name Teletype 5620. ie
screen management soltware supplied for the Blit is called I .aycrs 11051.

lSP Byte Stream Protocol. A transport protocol in the PUP Internetwork Architecture [19]. BSP
implements a reliable virtual circuit on top of the internet datagrams of the network layer.

C A programming language designed at Bell Laboratories for the Unix operating system 1711.
The language is above the level of assembler, but allows machine-dependent constructions
for low-level systems programs such as device drivers.

CAI) Computer Aided I)csign. The application of computers to the design process.

...................................... ".
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CAGES Configurable Applications for Graphics Employing Satellites. A system developed at the
University of North Carolina that allowed a programmer to assign modules in interactive
graphics programs to one of two processors at load time [621. The implementation used an
IBM 360/75 connected to a DEC PDP-11/45 with 88K bytes of memory. Programs were
written in a subset of PL/I.

Calcomp California Computer Corporation. An early manufacturer of computer graphics output (pen
plotting) devices.

Cedar An experimental computing environment developed at Xerox Palo Alto Research
Center [461, using the language Mesa [99] with extensions taken from Interl .isp [1 381.

!A%

Clipping A process to insure that an image lies within a certain (usually rectangular) boundary of
visible space.

CORE A graphics subroutine package specification developed in 1979 by the ACM SIGGRAPII
Graphics System Planning Committee [147].

CPU Central Processing Unit. Tlhe part of a computer system that fetches and executes
instructions.

Cursor A special symbol used to specify a particular position on a screen.

Datagram A network protocol in which every packet includes a full address and is routed separately
-"'4 from all other packets. This is in contrast to virtual circuit networks in which addressing and

routing are performed on a connection basis.

DFS Distributed File System. A general concept (providing network transparent file access), and
in particular a project at the Xerox Palo Alto Research Center to develop a distributed file
system [1341.

Display File A data structure used to generate an image. Foley and van Dam discuss the many possible
uses for display files [56]. Alternately called display lists or display buffers.

DISDB Device Independent Structure DataBase. A concept in the Lawrence Berkeley Iaboratories
Network Graphics System [241, similar to the Wiss of GKS. Application programs use the
workstation-independent layer to create, modify, and delete information in tile database.
while the workstation-dependent layers read the structure information to update the displays.

Dragging The translation of a selected displayed object along a path specified by a graphic input device.

'l'his is a form of image transformation.

Dorado A high-performance personal scientific computer built at Xerox PARC [751.

. I)ynabook A concept of a powerful portable personal computer system that could be used in education
uinch like a notebook is currently being used 1901.

Emacs A screen display editor that is extensible by using an interpreter for a powerful
language 11291. ' e original version was implemented in 1974 for the l):(systcm-10 and
DitcSystem-20 line of computers. There are now many versions for a variety of machines

and operating systems.

Fcape A facility to access functions that are normally not part of the interface specification.

Ethernet A particular kind of local area network that uses carrier sense multiple access with collision
detection. lhe official specification for the data link and physical layers was developed
jointly by Xerox, Digital Equipment, and Intel Corporations [441.

vz
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Extent Also called the bounding box. le smallest orthogonal rectangle containing the object in
question. "'his is obtained by calculating the maximum and minimum coordinates of the
objects along each axis.

Frame Buffer The digital memory used to store the bitmap in a raster display.

Frontend The part of a computer system that deals with the user. The frontend should be optimized
f)r fast response time, with longcr operations made part of the backend.

OKS Graphical Kernel System. A standard graphics package definition adopted by the
International Standards Organization [641 and the American National Standards Institute.

Hit Detection lie operation of associating an event on a graphics input device with an item in the display
list. This is the function of a Pick device.

IcoS InterCOnnected Processor System. A graphics system developed at Brown University to
dynamically distribute parts of an application program between two processors [97, 146, 1281,
an IBM 360/67 and a Meta 4 with 64K bytes of memory and a 50K bits per second serial
connection. A single application program written in the Algol-W language was used for
performance measurements.

IKP Inter-Kernel Protocol. The protocol used in the V-System between kernels to provide the
transparency of message passing.

Inquire Operations that return information from the graphics system.

InterLisp An experimental computing environment developed at Xerox Palo Alto Research Center,
based on a form of the Lisp language [1381. The Interl.isp system has been ported to several
different computing environments, from personal computers to timesharing systems.

IP Internet Protocol 1106]. A network-level protocol used in the ARPANET.

1ptn Internet Protocol TelNct. The V-System program that allows a user to have a terminal
session on a remote server host.

IRIS Integrated Raster Imaging System. A high-performance color graphics workstation
developed at Stanford University [391, and now marketed by Silicon Graphics, Inc. of
Mountain View California.

ISO International Standards Organization.

Keystroke One user action, such as pressing a key on a keyboard. Used to model the psychology of
o* human-computer interaction [261.

Layers A software system developed for the Illit terminal developed by Bell laboratories [105].

I.RG ILearing Research Group. The group that developed the Smalltalk language: called de
Software Concepts Group since 1981.

, Mainframe A very large and expensive computer, typically purchased by a group and maintained in a
computer room.

, Mbyte Megabyte. The twentieth power of two, number of bytes, usually referring to computer
memory. Actual number is 1048576, significantly larger than one Million.

MC60O0 A currently popular microproce-sor produced by Motorola Corporation [100]. It is a 32 bit
architecture 169), with several different implementations. Unfortunately this name was used
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100 PARTITIONING OF FUNCTION IN A DISTRIBUTEI) GRAP1ICS SYSTEM

for both the architecture and the first hnplemcntation (a 16 bit implementation with 23
address bits).

Mesa A language developed at Xerox PARC for writing systems programs. Mesa supports systems
of separate modules with controlled sharing of information. Thie basic Mesa language has
been extended in the Cedar experimental programming environment [461.

Mhz McgaHertZ. One million cycles per second. One parameter of microcomputer performance
is the clock speed.

Mips Million Instructions Per Second. A common (but inaccurate) measure of computer system
performance.

Mouse A graphics input device that operates by sensing relative position changes when traveling
over a flat surface [501.

Mux Multiplexor. A device which mediates between several entities all wishing to use a common

resource.

NABTS North American Broadcast 'eletext Specification [111.

NAPLPS North American Presentation Level Protocol Syntax (6].

NIX Normalized Device Coordinates. A very low-level but resolution independent coordinate
system. For example, the coordinates of the view surface as floating point numbers ranging
from zero to one with (0,0) the lower left corner and (1,1) the upper righL

NGP Network Graphics Protocol. The transport layer protocol used to communicate between a

workstation and the system running a remote graphics application.

NGS Network Graphics System. Designed at the Lawrence Berkeley Laboratory [251, and partially
implemented [241.

NLS oN-I.ine System. A software system developed at SRI [491 that used computers with graphics
workstation to augment the abilities of knowledge workers. It iS now marketed by Tymshare
Corporation.

NMos N-channel Metal Oxide Silicon. A process for making very large scale integrated circuits [931.

NVT Network Virtual Terminal. A concept originally developed for long-haul networks [1621, to
ease the connection of a variety of real terminals to a variety of computer systems without
having to support all possible combinations.

PARC 'Ilhe Xerox Palo Alto Research Center.

Pel I BM terminology for Pixel.

Perq A workstation built by 'lire Rivers Corporation [1441.

PIIIc'IS Programmer's I lierarchical Interface to the Graphics System. A draft standard for a graphics
package with hierarchical segment structure [4].

Pick A graphical input event which returns the identification of an item within a display file.

Pilot An operating system for workstations developed at Xerox IPARC, written in the Mesa
language and used as the basis for the Xerox )evelopment F-nvironment [1601.
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Pixel Picture Element. lbe smallest display area on a raster display surface whose characteristics
can be controlled independently of its neighbors.

Pixrect A layer in the graphics architecture of SUN Microsystcms Inc. [123].

Pop-up A type of menu that only appears when a choice must be made.

Pty Pseudo-terminal. An operating system object that behaves as a terminal on one side, but
communicates to a program (typically a server "l'ELNtil') on the other side.

Raster A rectangular array of pixels. A raster display is one that use an array of pixels to produce the
image, in contrast to a series of lines, for example.

RasterOp A Raster Operation. One of the many bit-oriented operations between one two bit-arrays
producing another bit-array [103).

RPC Remote Procedure Call. An attempt to preserve the semantics of local procedure calls across
a network, usually done as an extension to a compiler [102]."

RS-232 A Recommended Standard 232 of the Electronics Industries Association. Used to connect
most low to medium speed terminals to computers. The communication is full-duplex using
twisted pairs between two points, over short distances. A functionally similar interface used
outside the United States is ccrrr specification V24.

RTP Rcndez-vous and Termination Protocol. Part of the PUP Internetwork Architecture [19],
used to set up and terminate byte stream protocol connections.

Rubber Banding
An interactive technique that moves the common vertex of one or more objects such as lines
while the other end points remain fixed.

Scan Conversion
''lie process of converting an image defined in terms of graphical objects into a raster (array
of pixels).

Screen Coordinates
Device dependent coordinates, usually integer raster units. Only the lowest-level device

V', driver uses this coordinate system.

Scrolling Continuous vertical (or horizontal) movement of display elements within a viewport. As new
objects appear at one edge (such as lines of text along the bottom), old objects disappear at
the opposite edge.

SIF Structured )isplay File. A directed, acyclic graph of items, each of which is either a primitive
item or a symbol, which is a list of other items. SIFs are Ianil)ulatcd via the VGI', which
is described in Section 3.4.

Segment An ordered collection of output primitives defining an image.

SIGGRAPII Association for Computing Machinery Special Interest Group on computer Graphics.

Smalltalk A language and system developed at the Xerox Learning Research Group, now known as the
Software Concepts Group 158].

SUN Stanford University Network. Also applies to a particular workstation, a trademark of SUN
Microsystems Incorporated.
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102 PARTITIONING OF FUNCI1ON [N A DISTRIBUTED GRAPIhICS SYSTEM

Symbol A list of graphical items grouped together and given a name. '[his name can bc used to add
instances of the symbol to other symbols, producing levels of structure in an SDF.

TCP Transmission Control Protocol. A transport protocol in the ARPA protocol architecture [1061.

TELNEr A protocol to allow remote logins [1071.

TOPS-20 A timesharing system from Digital Equipment Corporation for the l)icSystem-20 line of
A computers.

UNIX A portable timesharing system developed by AT&T Bell I aboratories in the early 1970s [111.

User The human end-user of a computer system or set of software. Thus the user interface deals
with the person trying to use the system to get work done, in contrast to the programmer
interface which is used by the developer.

VAX Virtual Address eXtension. A line of computers built by Digital Equipment Corporation
with a 32 bit architecture 1451.

VDI Virtual Device Interface. A proposed standard interface between a graphics package and a
device driver, as shown in Figure.2-2.

VDM Virtual Device Metafile. A method for storing graphics information on a file. Figure 2-2
illustrates how VDM fits into the architecture of standard graphics packages.

VGT Virtual Graphics Terminal. A concept of the VGTS which combines advantages of
traditional graphics packages and window systems within the framework of a virtual terminal
management system. Section 3.4.2 defines the semantics of a VGT, which is associated with
one item in an SDF (usually a symbol).

VGTP Virtual Graphics Terminal Protocol. The protocol used between the VGTS and a client.
Described in Section 3A.

View A mapping of a virtual terminal onto a physical output device. Default views are provided by
the application programmer, while the user creates and manipulates views with the View
Manager, as described in Section 4A.

Vicwport A rectangular area of a physical output device which presents the contents of a window. The
VGI'S prototype implementation supports potentially overlapping viewports, so the actual
areas of the screen that are visible for each viewport are called subviewports. Section 4.2.1
describes this process in more detail.

V-Kcrnel A small real-time portable operating system kernel [311, descended from 'llioth [29] and
Verex [301.

VLSI Very ILarge Scale Integration 1931. VISI is both the reason why graphics workstations are
becoming cconomical, and one of the major users ol those workstations.

VMS Virtual Memory System. 'he operating system supplied by Digital Equipment Corporation
for the VAX computer (45].

V-Server A program running within some predefined operating system that provides services such asfile access and remote execution to clients in a V-System 1311.

V-System A system of distributed servers and a synchronous message-based kernel developed by the
l)istributed Systems Group of Stanford University [17].
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VT Virtual Terminal. A concept originally developed for long-haul networks [162], to ease the
connection of a variety of real terminals to a variety of computer systems without having to
support all possible combinations.

SViTmS Virtual Terminal Management System. An agent in the Rochester Intelligent Gateway which
managed terminal interaction [771.

. WDSS Workstation Dependent Segment Storage. A concept used in G KS [64].

WIss Workstation Independent Segment Storage. A concept used in G KS [641.

Window Iliat part of the virtual (or world) coordinate space that is being displayed in a particular
view. This is the standard graphics package terminology [1471, in contrast to the "window
system" terminology (see Chapter 2) which uses the term to refer to the view itself.

Woodstock A stateless file server project at Xerox PARC [1371. One of the first experiments at
partitioning between an application program and its disk.

World Coordinates
lThe coordinate system of the application program's model of an object. The input to the

viewing pipeline in most graphics systems [1471.

Workstation A computing resource dedicated to a user. This may range from a small, fixed-function
terminal to a large self-contained personal computer.

Zoom Changing the sealing factor mapping from virtual coordinates to physical coordinates to give
the appearance of having moved towards or away from the object of interest.
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A ShIORT VGTS SAMPLE PROGRAM 105

-Appendix B-
A Short VGTS Sample Program

The following program has actually bccn run both Linder Unix and under the V system executive. The
* #i fdef Vsystem directives allow the programmer to conditionally compile code for onc environment or

the othcr. It also must be compiled with thc appropriate compiler and linked with the corrcct library. It first
creaces an SI)F and VG'l'. then displays 100 random objects of various kinds.

" test.c - a test of the remote VGTS implementation
"Bill Nowicki September 1982

2 Al include <Vgts.h>
# include <Vio.h>

# define Objects 100 /* number of objects/

* short sdf, vgt;

Quito

DeleteVGT(vgt, 1):
DeleteSDF(sdf);
ResetTTY();
exlt();

ma ino(

int 1:
short item;

* long start, end;

# ifndef Vsystem
printf("Remote VGTS test program\n");

AlN else Vsystem
printf("VGTS test program\n");

# endif Vsystem
fflush(stdout);
GetTTYfl:
sdf = CreateSDF():
DefineSymbol( sdf, 1. "test" )
Addltem( sdf, 2, 4, 40, 4, 60, NM, SOF..ILLEDRECTANGLE, NULL )
EndSymbol( sdf, 1, 0 );
vgt =CreateVGT(sdf, GRAPHICS+ZOOMABLE, 1, "random objects" )
DefaultView(vgt. 500. 320. 0, 0, 0, 0, 0, 0);

A i



106 PARTITIONING OF FUNCI'ION IN A DISTRIBUTED GRAPHICS SYSTEM

time(&start);
for (1P12; i<Objects; i++ )

s
short x = Random( -2, 155);

. short y =Random( -10. 169);

short top = y + Random( 6. 100 );
short right = x + Random( 4, 120 );
short layer = Random( NM, NG );

EditSymbol(sdf, 1);
Deleteltem( sdf, i-10);
switch (Random(l, 6) )

case 1:
Addltem( sdf, i, x. right, y, top, layer,

SDFFILLEDRECTANGLE, NULL );
break;

case 2:
Addltem ( sdf, i. x, x+1000, y, y+16, 0, SDF_SIMPLETEXT,
"Here is some simple text" );

break;

case 3:
Addltem( sdf, i. x. right, y, y+l, 0,

SDFHORIZONTALLINE, NULL );
break;

case 4:
Addltem( sdf, i. x, x+1, y. top, 0,

SDFVERTICALLINE, NULL );
'• "break;

case 5:
Addltem( sdf, i, x, right, y, top, 0,

SDFGENERAL_LINE, NULL );
break;

case 6:
Addltem( sdf, i, x, right, top, y, 0.

SDFGENERAL_LINE, NULL );
break;

I
EndSymbol( sdf, 1, vgt );

-. 1
time(&end);
if (end==start) end z start+1;
printf("%d objects in %d seconds, or %d objects/second\r\n",

Objects, end-start. Objects/(end-start));
printf("Donel\r\n");
Quito;

!)
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A SHORT VGTS SAMPLE PROGRAM 107

Random( first, last )
C(

* generates a random number
* between "first" and "last" inclusive.
0/

int value = rand()/2;
value %= (last - first + 1);
value += first;
return(value);
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- Appendix C-
History of the Implementation

The SDF manager was originally written by Charles "Rocky" Rhodes, incorporated into the Yale VLSI
layout program by Tom Davis [421, and converted to use the V kernel by Marvin Theimer during the summer
of 1982. Most of the conversion into the VGTS by the author was done in late summer and fall of 1982, with
significant events as follows:

July, 1982 The Yal e program was converted to run under the V kernel,

August 27. 1982 The SI)F manager operations could be called via C function calls from the Yaleprogram, but was a separate module. The window manager and related drawing

routines could be linked together with any client wanting to use them.

September 1, 1982 A terminal program was written to combine standard terminal emulation functions, a
PUP User TFjNIr implementation, and the Sl)F manager functions in one program.
This was based on an earlier implementation of PUP User TPLNUr by the author.

September 18, 1982 The terminal program was augmented to decode the escape sequences, so that a
program running on a remote host could manipulate an SI)F. A set of"stub" functions
was written that allowed programs to run either on the SUN directly or on any host
reachable through a TELNET connection.

October 2, 1982 Yale was ported to the VAX, using the stub routines to simulate ie local VGTS
environment. A few remote test programs were written at this time, including the
program in Appendix B.

November 1, 1982 Overlapping viewports added. Arbitrary lines were also added and debugged. Another
test program to display wire-frame drawings projected from three dimensions was
written.

January 1983 A simple illustration editor was written by the author to edit diagrams for papers on the
VGTS. All of the diagrams in this thesis are produced with this program.

February 17, 1983 The text editor Ved operated under the VGTS along with other executives.

March 5. 1983 Graphics applications, including previously mentioned test programs, and both the
distributed and local versions of the Yale program were operated tinder the VGTS
and coexisted with each other. The VGTS/Executive combination was installed for
production use by other members of the Distributed Systems Group.

March, 1983 The abilP'" to display text in arbitrary fonts was added, in addition to the special
fixed-with font.

April 5, 1983 Continuous mouse monitoring added, so real-time feedback was possible. With these
new additions to the illustrator program, and the Ved editor, usability was greatly
increased. The view manager also provided feedback when positioning viewports.

April 20, 1983 Raster objects were added, and a test program which displays half-tone photographic
images was written. Another test program successfully displayed a database containing
a map of the world.

May, 1983 Filled polygons and splines were added, and a drawing editor program was developed
to test them.
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110 PARTITIONING OF FUNCTION IN A I)ISTRIBUTEDGRAPIIICS SYSTEM

July, 1983 Banners added and integrated into the executive. Screen saver added to turn off SUN
video if nothing has happened in the last ten minutes. View manager menus were
reorganized.

September, 1983 Added line editor and integrated into the executive. Removed line editors from most
application programs. Added directory protocol support.

November, 1983 Split off exec server instead of linking directly to executives.

July, 1984 Initial port to the SUN-2 frame buffer. Only simple text and rectangle objects worked
at this point. View manager shortcuts installed.

Other people who have contributed to the VGI'S implementation were as follows:

P. M. Bothner Primitives for display of rasters and arbitrary fonts, on both SUN-1 and SUN-2 frame
buffers.

K. P. Brooks Continuous mouse monitoring, arc and fast filled polygons, design of GKS compatibility
package.

D. R. Cheriton IDesign of I/O protocol, and the V kernel: Co-principal investigator for the Distributed
Systems Group.

T. R. Davis Original application, which was integrated with SDF management and display routines, as
well as original view manager in the YALE program.

J. C. Dunwoody Automatic pagination of pad output, simple terminal server, mouse text selection for line

editor.

R. S. Finlayson Port to the SUN-2 frame buffer, including most of the graphics primitives for the SUN-2.

L. Gass Hit detection functions (FindSelectedObject).

D. R. Kaclbling Filled splines and polygons, and an application program that uses them (Draw).

K. A. Lantz Virtual Terminal concept, overall architecture of user interface; research supervisor, and
Co-principal investigator for the Distributed Systems Group.

T. P. Mann V-Kernel support for frame buffer access, many minor bug fixes in related software.

J. I. Pallas Improved cursor visibility, some minor bug fixes, and short cuts to get to view
management functions.

V. R. Pratt Fast vector drawing function implementation.

C. C. Rhodes Initial SDF management functions, partial port to the Iris.

M. M. 'lbeiner Conversion of YALE to the V-System, and the internet server.

Undoubtedly there are others who have helped in one way or another, but these are the major contributors.
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- Appendix D -

Detailed Experimental Results

This appendix contains the specific results from benchmarks and instrumentation discussed in Chapter 6.
There are three kinds of synthetic benchmarks: text, graphics, and structure. Measurements were also taken
from the illustration editor, using the illustrations in this thesis as data. Within each kind of benchmark the
results are grouped first by workstation type, which appears in the first column. The following workstations
were used for the tests:

Sun-i This was the first model of workstation marketed as model 100 by Sun Microsystems, Inc. of
Mountain View, California. It is connected to experimental (3 Mbit/sccond) Ethernet with a
controller built by Sun Microsystems. It contains a 10Mhz MC68000 processor, with 1Mbyte
of memory accessed with no wait slates. Kc)board and optical mouse are polled by software.

Sun-l.5 This was the first upgrade to the Sun-I by Sun Microsystems, called model 100U. It is
connected to standard 10 Mbit/second Ethernet with a controller made by 3Com
Corporation, also of Mountain View, California. It contains a 10Mhz MC68010 processor,
with 2Mbyte of memory accessed with wait states, with a resulting effective speed of about

*. 8Mhz. Keyboard and optical mouse are polled by software.

Sun-2upg This was another upgrade to the same physical workstation made by Sun Microsystems, also
called model 2/100. It contains a 10Mhz MC68010 processor, with 2Mbyte of memory
accessed with no wait states. It is connected to standard 10 Mbit/second Ethernet with a
controller made by 3Com Corporation. Keyboard and optical mouse are polled by software.
It is actually slightly slower on graphics than the Sun-i, probably due to a different bus
arbitration circuit.

Sun-2 This was the second workstation product made by Sun Microsystems, called model 2/120. It
contains a 10Mhz MC68010 processor, with 2Mbyte of memory accessed with no wait states,
the same processor as the Sun-2upg, but a different graphics architecture. The screen bitmap
is larger than the previous Suns, but is addressed as linear memory instead of the clever
scheme of the Sun-I. This makes smaller operations much slower, while large operations
take about the same time. It is connected to standard 10 Mbit/second Ethernet with a
controller made by 3Com Corporation. Keyboard and optical mouse arc connected by
RS232 serial lines.

Cadlinc An older but similar workstation design, with an 8Mhz MC68000 processor. Only 512K
bytes of memory are accessed with no wait states, and another 512K bytes are available on the
Multibus. Keyboard and mechanical mouse are controlled by a dedicated microprocessor,
connected to th MC68000 through an RS232 serial connection.
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The following server hosts were used in the experiments:

Diablo A VAX-11/780 running 4.1 Unix during experiments, with 4 Mbyte memory, connected to
3Mbit/second Experimental Ethernet. Operated by the SUMEX project in the Stanford
University Medical Center.

Navajo A VAX-I 1/780 running 4.1 Unix during experiments, with 4 Mbytc memory, connected to
3Mbit/second Fxperimcntal Ethernet. Owned by the Stanford Numerical Analysis group
of the Computer Science Department.

Whitney A VAX-11/780 running 4.1 Unix, with 8 Mbyte memory, connected to 3Mbit/sccond
Experimental Fthcrnct. Owned by the Robotics group of the Stanford Computer Science
Department.

Carmel A VAX-] 1/750 running 4.1 Unix during experiments, with 2 Mbytc memory, connected to
3Mbit/second Experimental Fhrnet. Owned by the Stanford Computer Science
Department for file server development.

Coyote A VAX- 1/750 running 4.2 Unix, with 2 Mbyte memory, connected to both 3Mbit/second

Experimental Ethernet and 1OMbit/second Ethernet. Owned by the Robotics group of the
Stanford Computer Science Department.

Gregorio A VAX-11/750 running 4.2 Unix, with 5 Mbyte memory, connected to both 3Mbit/second
Experimental Ethernet and 1.Mbit/second Ethernet. Owned by the Distributed Systems
Group, and used for VAX operating system support, both the VAX V kernel polt and Unix.

Pescadero A VAX- 1/750 running 4.2 Unix, with 6 Mbyte memory, connected to both 3Mbit/second
Experimental Ethernet and 1OMbit/second Ethernet. Owned by the Distributed Systems
Group, and used as the primary file server for V-System development.

ISI-A A VAX-11/780 running 4.1 Unix. with 4 Mbyte memory, connected to the ARPANET,

located in the Information Science Institute in Marina del Rey, California. about 500 miles
south of Stanford. Used for lnterLisp support.

ISI-H A VAX-l1/750 running 4.2 Unix, with 2 Mbyte memory, connected to the ARPANET, also
located in tie Information Science Institute. Used for Unix development.

Camelot A VAX-1l/780 running 4.2 Unix, with 4 Mbyte memory, connected to 3Mbit/second
Experimental Ethernet. ILocated in the Center for Educational Research at Stanford, and
operated by the Low Overhead Timesharing System (LOTS).

Parc-C A VAX-11/785 running 4.2 Unix, with 8 Mbyte memory, connected to the ARPANET.

Located in and owned by the Xerox Palo Alto Research Center. Used as a mail gateway.
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The next column gives the protocols used in the experiments. These were discussed at the begining of
Chapter 6, and arc illustrated in Figures 6-1 and 6-2.

Local The application runs on the same workstation that is used for display. Communication is by
local V kernel messages.

VAX-IKP The V-System I/O protocol. using a message protocol implemented directly above the data-link
layer of Ethcrnet. The application runs on a VAX UNIX system and communicates via pipes to a
Unix program that simulates a V-kernel by sending kernel packets on the Ethernet.

SUN-w ' The application runs on another workstation, and sends V messages directly using the Inter-

PuP The PUP Byte Stream Protocol on a directly connected Ethernet.

PuGv The PUP Byte Stream Protocol through one or more gateways to another Ethernet.

IP Internet Protocol on a directly connected Ethernet.

IPGW Internet Protocol through one or more gateways.

A-II' Internet Protocol, over an Ethernet to a PDP-1I /23 acting as a gateway to the ARPANET.

nnnn A four digit number, one of 1200" 2400, 4800, or 9600, refers to the baud rate of a VAX terminal
port that was attached to an RS-232 port on the workstation. A simple V-System program
allowed normal UNIX terminal sessions on this terminal port.

I ".'M

-w

'1



V.V.V

114

D.1 Text Benchmark

The text benchmark was primarily a program called tt ime, originally written by Peter Eichenberger. This
program simply printed characters as quickly as possible until stopped by an interrupt or for a given amount
of time (two minutes was the time used in these experiments). The columns are: workstation type, server
host, protocol, and character rate. All numbers are given as characters per second through all layers of
software including the terminal emulator, except in the local case where the rates are broken down into draw
and construction times. For these experiments, which were done only with the V protocols, an option of the
v e c t i me program was used.

,%

Sun-1 Sun-1 Draw 20711
Construct 7286
Page 5387
Scroll 448

Sun-I 780 4.1 (Diablo) VAX-IKP 4157
Sun-I 780 4.1 (Diablo) IP 3911
Sun-I 780 4.1 (Navajo) IP 4139
Sun-i 780 4.1 (Navajo) PuP 1566
Sun-i 780 4.1 (Whitney) VAX-IKP 4257

.p. Sun-i 780 4.1 (Whitney) IP 4344
. Sun-I 780 4.1 (Whitney) PuP 1638

Sun-1 750 4.2 (Coyote) VAX-IKP 3628
Sun-I 750 4.2 (Coyote) IP 3521
Sun-1 750 4.2 (Coyote) PUP 2030
Sun-i 750 4.1 (Carmel) VAX-IKP 4078
Sun-1 750 4.1 (Carmel) IP 2299
Sun-I 750 4.1 (Carmel) Pup 1371
Sun-I 750 4.2 (G regorio) IP 1544
Sun- 1 750 4.2 (ISI-H) A-IP 2170
Sun-1 780 4.1 (ISI-A) A-IP 1911

Sun-2 Draw 10111
Construct 6037
Page 3653
Scroll 201

Sun-2 750 4.2 (Grcgorio) IP 4409

Sun-2upg Draw 18193
Construct 6702

Page 4776
Scroll 354

Sun-2upg 780 4.1 (ISI-A) A-IP 2200
Sun-2upg 785 4.2 (Pare-C) A-IP 2317
Sun-2upg Another Sun-2 Draw 18916

Construct 4067
Page 3342
Scroll 386
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Sun-2upg Another Sun-1.5 Draw 19104
Construct 3713
Page 3109
Scroll 34.1

Sun-1.5 Draw 17111
Constuct 4496
Page 4046
Scroll 330

Sun-1.5 750 4.2 (Coyote) VAX-IKP 3187
Sun-1.5 750 4.2 (Coyote) IP 3628
Sun-1.5 750 4.2 (Grcgorio) VAX-IKP 3213
Sun-1.5 750 4.2 (Grcegorio) lP 3554
Sun-1.5 780 4.1 (ISMI-) A-IP 873
Sun-1.5 Another Sun-2 Draw 15483

Construct 3099
Page 2582
Scroll 306

Sun-1.5 Another Sun-1.5 Draw 15360
4Construct- 3109

page 2585
scroll .290

Cadlinc Draw 15737
Construct 5509
Page 4080
scroll 331

Cadlinc 780 4.1 (D~iablo) VAX*JKP 2856
Cadlinc 780 4.1 (D~iablo) IP 3208
Cadlinc 780 4.1 (Navajo) IP 3558
Cadlinc 780 4.1 (Navajo) Pup 1349
Cadlinc 780 4.1 (Whitney) VAX-IKP 3179
Cadlinc 780 4.1 (Whitncy) IP 2453
Cadlinc 780 4.1 (Whitney) Pup 1354
Cadlinc 750 4.2 (Coyote) VAX-IKP 3179
Cadlinc 750 4.2 (Coyote) IP 3462
Cadlinc 750 4.2 (Coyote) Pup 1562
Cadlinc 750 4.1 (Carmel) VAX-IKP 3323
Cadlinc 750 4.1 (Carmecl) IP 2407
Cadlinc 750 4.1 (Carmel) Pup 1325
Cadlinc 750 4.2 (Grcgorio) IIPGW 3510
Cadlinc 750 4.2 (Grcgorio) PuPOW 1327
Cadlinc 780 4.1 (1SI-A) A-lP 1837

Table D-1: Detailed text results
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D.2 Vector Graphics Benchmark

lc v e c time program was used to test simple vector graphics performance. The columns in thc results
below are: workstation type, server host, protocol, test name, and vector rate. All numbers are in vectors per
second. The program drew a fully-connect 36-agon, and was based on a similar program written by Professor
Vaughan Pratt. The calculations for tie points of the polygon were done once before timing began. For the
I1Batch test te polygon was erased and displayed ten times, with the results computed over all ten trials. The
benchmark program reported the standard deviation for the trials. Runs with large deviations were repeated
on the assumption that transient effects such as incoming computer mail or other background activity caused

- these anomalous results.

For the Incremental test (noted below as "'Add")each Addltemcall was preceded by an EditSymbolcall and
followed by an EndSymbol call, to measure the number of transactions per second. Since one run of the
Incremental test typically took several minutes, these were only repeated once. All experiments were
performed when timesharing load was low. '[The last column gives the month and year the measurements
were taken.

Sun-1 Local Batch Draw 451 12-83
Create 485 12-83
Total 234 12-83

Sun-I Local Batch Draw 428 12-84
Create 450 12-84
Total 219 12-84

" Sun-I 780 4.1 (Diablo) IPGW Batch Create 114 6-84
Total 81 6-84

Sun-I 780 4.1 (Navajo) VAX-IKP Batch Create 508 12-83
Total 185 12-83

- . Sun-i 780 4.1 (Navajo) IP Batch Create 162 12-83
Tot-il 111 12-83

Sun-I 780 4.1 (Navajo) PUP Batch Cg e 200 12-83
Total 122 12-83

Sun-I 780 4.2 (Navajo) VAX-IKP Batch Create 180 12-84
Total 171 12-84

Sun-I 780 4.2 (Navajo) IP Batch Create 387 12-84
Total 377 12-84

- Sun-i 780 4.2 (Navajo) PUP Batch Create 222 12-84
Total 218 12-84

Sun-i 780 4.1 (Whitney) VAX-IKP Batch Create 396 12-83
Total 168 12-83

Sun-I 780 4.1 (Whitney) IP Batch Create 168 12-83
Total 111 12-83

Sun-I 780 4.1 (Whitney) PUP Batch Create 207 12-83

Total 128 12-83
Sun-I 750 4.2 (Coyote) VAX-IKP Batch Create 160 12-83

Total 97 12-83
Sun-I 750 4.2 (Coyote) IP Batch Create 136 12-83

Total 93 12-83
Sun-I 750 4.2 (Coyote) PUP Batch Create 133 12-83

Total 91 12-83
Sun-i 750 4.1 (Carmel) VAX-IKP Batch Create 335 12-83

Total 155 12-83
Sun-1 750 4.1 (Carmel) IP Batch Create 107 12-83

Total 81 12-83
Sun-i 750 4.1 (Carmel) PUP Batch Create 128 12-83

Total 80 12-83
Sun-I 750 4.2 (Gregorio) IP Batch Create 220 12-84

Total 215 12-84
Sun-i 750 4.2 (Gregorio) PUP Batch Create 198 12-84

• . ,. ... , ............. , ,' , ..- ... ,.. -.... ., .. .',. . , ., ,
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Total 195 12-84
Sun-i 780 4.1 ([SI-A) IP Batch Create 133 12-83

Total 92 12-83

Sun-I 750 4.2 (ISI-H) A-IP Batch Create 120 6-84
Total 73 6-84

Sun-i 780 4.2 (Camelot) IPGW Batch Create 154 6-84
Total 100 6-84

Sun-i 780 4.2 (Camelot) PUPGW Batch Create 156 6-84
Total 105 6-84

Sun-I Another Sun-i Sun-ZKP Batch Create 360 6-84
Total 192 6-84

Sun-2 Local Batch Draw 290 12-84
Create 468 12-84
Total 179 12-84

Sun-2 750 4.2 (Gregorio) VAX-IKP Batch Create 372 11-84
Total 345 11-84

Sun-2 750 4.2 (Gregorio) IP Batch Create 168 11-84
Total 166 11-84

Sun-2 785 4.2 (Parc-C) A-IP Batch Create 155 11-84
Total 145 11-84

Sun-2upg Local Batch Draw 418 6-84
Create 439 6-84
Total 214 6-84

Sun-2upg Local Batch Draw 406 12-84
Create 446 12-84
total 211 12-84

Sun-2upg 780 4.1 (Navajo) IPGW Batch Create 149 6-84
Total 101 6 - 4

Sun-2upg,780 4.1 (Navajo) PUP Batch Create 167 6-84
Total 109 6-84

Sun-2upg 750 4.2 (Gregotio) VAX-IKP Batch Create 381 12-84
Total 348 12-84

Sun-2upg 750 4.2 (Gregorio) IP Batch Create 229 12-84
Total 224 12-84

Sun-2upg 750 4.2 (Gregorio) PUP Batch Create 204 12-84
Total 198 12-84

Sun-2upg 750 4.2 (Pescadero) IP Batch Create 128 6-84
Total 90 6-84

Sun-2upg 780 4.2 (ISI-A) IP Batch Create 134 9-84
Total 93 9-84

Sun-2upg 750 4.2 (ISI-H) A-IP Batch Create 126 12-84
Total 121 12-84

Sun-2upg 785 4.2 (Parc-C) IP Batch Create 159 12-84
Total 144 12-84

Sun-2upg Another Sun-2 Sun-IKP Batch Create 402 6-84
Total 204 6-84

Sun-2upg Another Sun-2 Sun-IKP Batch Create 384 12-84
Total 185 12-84

Sun-Zupg Another Sun-1.5 Sun-IKP Batch Create 360 6-84
Total 192 6-84

Sun-1.5 Local Batch Draw 339 3-84
Create 364 3-84

Total 176 3-84
Sun-1.5 750 4.2 (Coyote) VAX-IKP Batch Create 445 3-84

Total 145 3-84
Sun-1.5 750 4.2 (Coyote) IP Batch Create 144 3-84

Total 95 3-84
Sun-1.5 750 4.2 (Gregorio) VAX-IKP Batch Create 453 3-84

Total 146 3-84
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Sun-t.5 750 4.2 (Gregorio) IP Batch Create 143 3-84
Total 90 3-84

Sun-1.5 750 4.2 (Pescadero) VAX-IKP Batch Create 326 6-84
Total 128 6-84

Sun-1.5 760 4.2 (Pescadero) IP Batch Create 129 6-84
Total 88 6-84

Sun-1.5 750 4.2 (Pescadero) PUP Batch Create 93 6-84
Total 68 6-84

Sun-1.5 780 4.1 (ISI-A) A-IP Batch Create 129 3-84
Total 85 3-84

Sun-1.5 750 4.2 (ISI-H) A-IP Batch Create 125 6-84
Total 75 6-84

Sun-1.5 Another Sun-2 Sun-IKP Batch Create 361 6-84
Total 175 6-84

Sun-1.5 Another Sun-1.5 Sun-IKP Batch Create 322 6-84
Total 165 6-84

Cadlinc Local Batch Draw 340 12-83
Create 369 12-83
Total 177 12-83

Cadlinc 780 4.1 (Diablo) VAX-IKP Batch' Create 422 12-83
Total 152 12-83

Cadlinc 780 4.1,(Diablo) IP Batch Create 84 12-83
Total 61 12-83

Cadlinc 780 4.1 (Diablo) PUP Batch Create 129 12-83
Total 82 12-83

Cadlinc 780 4.1 (Navajo) VAX-IKP Batch Create 292 12-83
Total 131 12-83

Cadlinc 780 4.1 (Navajo) IP Batch Create 159 12-83
Total 99 12-83

Cadlinc 760 4.1 (Navajo) PUP Batch Create 179 12-83
Total 107 12-83

Cadlinc 780 4.1 (Whitney) VAX-IKP Batch Create 431 12-83
Total 153 12-83.

Cadlinc 780 4.1 (Whitney) IP Batch Create 140 12-83
Total 92 12-83

Cadlinc 780 4.1 (Whitney) PUP Batch Create 177 12-83
Total 106 12-83

Cadlinc 750 4.2 (Coyote) VAX-IKP Batch Create 164 12-83
Total 92 12-83

CadlInc 750 4.2 (Coyote) IP Batch Create 139 3-84
Total 92 3-84

Cadlinc 750 4.2 (Coyote) PUP Batch Create 132 12-83
Total 86 12-83

Cadlinc 750 4.1 (Carmel) VAX-IKP Batch Create 346 12-83
Total 143 12-83

Cadlinc 750 4.1 (Carmel) PUP Batch Create 123 12-83
Total 75 12-83

Cadlinc 750 4.2 (Gregorio) IF "Batch Create 146 3-84
Total 91 3-84

Cadlinc 750 4.2 (Gregorio) PUP Batch Create 121 3-84

Total 82 3-84
Cadlinc 780 4.1 (ISI-A) A-IP Batch Create 133 12-83

Total 88 12-83
Cadlinc 750 4.2 (ISI-H) A-IP Batch Create 111 6-84

Total 68 6-84
Cadlinc Another Sun-1 Sun-IKP Batch Create 249 6-84

Total 143 6-84

Sun-I Local Add Total 47.7 12-83
Sun-i Local Add Total 62.2 12-84

Sun-I 780 4.1 (Diablo) PUP Add Total 5.5 12-83

N
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Sun-I 780 4.2 (Navajo) VAX-IKP Add Total 62.7 12-84

Sun-I 780 4.2 (Navajo) IP Add Total 91.6 12-84

Sun-I 780 4.2 (Navdjo) PUP Add Total 59.0 12-84

Sun-i 780 4.1 (Navajo) VAX-IKP Add Total 6.1 12-83

Sun-i 780 4.1 (Navajo) IP Add Total 4.8 12-83

Sun-i 780 4.1 (Navajo) PUP Add Total 4.3 12-83

Sun-I 780 4.1 (Whitney) VAX-IKP Add Total 6.5 12-83

Sun-I 780 4.1 (Whitney) IP Add Total 4.9 12-83
Sun-i 780 4.1 (Whitney) PUP Add Total 4.g 12-83

Sun-i 750 4.2 (Coyote) IP Add Total 7.8 12-83

Sun-I 750 4.1 (Carmel) VAX-IKP Add Total 4.6 12-83

Sun-i 750 4.1 (Carmel) IP Add Total 4.8 12-83

Sun-1 750 4.1 (Carmel) PUP Add Total 4.9 12-83

Sun-I 750 4.2 (Gregorio) IP Add Total 86.6 12-84

Sun-I 750 4.2 (Gregorio) PUP Add lotal 54.5 12-84

Sun-I 780 4.1 (ISI-A) A-IP Add Total 3.0 12-83

Sun-I 780 4.2 (Camelot) IPGW Add Total 3.1 6-84
Sun-I 780 4.2 (Camelot) PUPGW Add Total 2.9 6-84

Sun-i Another Sun-I Sun-IKP Add Total 9.0 6-84

Sun-2 Local Add Total 40.6 9-84

Sun-2 Local Add Total 61.5 11-84

Sun-2 750 4.2 (Gregorio) VAX-IKP Add Total 81.7 11-84

Sun-2 750 4.2 (Pescadero) IP Add Total 59.4 11-84

Sun-2 785 4.2 (Parc-C) A-IP Add Total 69.6 11-84

Sun-2 780 4.2 (Camelot) IPGW Add Total 84.0 12-84

Suo-2upg Local Add Total 42.0 6-84

Sun-2upg Local Add Total 59.4 12-84
Sun-2upg 750 4.2 (Gregorio) VAX-IKP Add Total 81.4 12-84

Sun-2upg 750 4.2 (Gregorio) PUP Add Total 57.6 12-84

Sun-2upg 750 4.2 (Gregorio) IF Add Total 81.5 12-84

Sun-2upg 750 4.1 (Pescadero) IP Add Total 6.8 6-84

Su.-2upg 785 4.2 (Parc-C) A-IP Add Total 3.7 11-84

Suit-2upg 785 4.2 (Parc-C) A-IP Add Total 64.1 12-84

Sun-2upg 750 4.2 (ISI-H) A-IP Add Total 39.3 12-84

Su'n-2upg Another Sun-2 Sun-IKP Add Total 29.0 6-84

Sun-2upg Another Sun-2 Sue-IKP Add Total 44.2 12-84

% Sun-2upg Another Sun-1.5 Sun-IKP Add Total 23.0 6-84

Sun-1.5 Local Add Total 35.0 6-84

Sug-1.5 750 4.1 (Pescadero) IP Add Total 6.8 6-84

Sun-1.5 Another Sun-2 Sun-IKP Add Total 24.6 6-84

Sun-1.5 Another Sun-1.5 Sun-IKP Add Total 22.3 6-84

Cadlinc Local Add Total 36.1 12-83

Cadlinc 780 4.1 (Diablo) IP Add Total 4.0 12-83

Cadlinc 780 4.1 (Diablo) PUP Add Total 3.0 12-83

Cadlinc 780 4.1 (Navajo) IP Add Total 4.7 12-83

Cadlinc 780 4.1 (Navajo) PUP Add Total 2.1 12-83

Cadlinc /80 4.1 (Whitney) VAX-IKP Add Total 6.2 12-83
Cadlinc 750 4.2 (Coyote) IP Add Total 7.2 12-83

Cadlinc 750 4.1 (Carmel) VAX-IKP Add Total 4.5 12-83

Cadlinc 750 4.1 (Carmel) IP Add Total 4.8 12-83

Cadlinc 750 4.1 (Carmel) PUP Add Total 4.7 12-83

Cadlinc 780 4.1 (ISI-A) A-IP Add Total 2.8 12-83

T'able D-2: Dctailed vector graphics results
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D.3 Structured Graphics Benchmark

The struct ime program was designed to test the effect of structure. 111,c benchmark drew an array of 30
NMOS invertcrs, each consisting of 26 rectangles, for a total of 780 rectangles. The resulting image was about
400 pixels on a side. Each rectangle was filled with one of four stipple patterns, each representing one of the
NMOS process layers. In the batch test, each of the 780 rectangles was added to the SDF, resulting in a single
level, unstructured symbol. The incremental test also used a single-level unstructured symbol, with each of
the 780 rectangles displayed as it was added.

In the structure test. a "contact cut" symbol was defined which consisted of three rectangles. Then an
"inverter" symbol was defined with two calls to the contact cut symbol and 20 other rectangles. 30 instances
of the inverter symbol were then added to the top-level symbol, resulting in a three-level display file. Thus a
total of 23 primitive items and 32 calls were added to the SDF. for a total of 55 items. All numbers are in
rectangles per second. Note that the structure create rate might be considered unfairly low. The benchmark
divided the total time for creation by the number of primitives added, in this case 23. To obtain the rate
including symbols calls, multiply this rate by 55/23 or about 2.4. The last column gives the month and year
the ricasurcments were taken.

Sun-1 Local Batch Create 407 6-84
Total 312 6-84

-. Local Struct Create 145 6-84
Total 1010 6-84

Local Incre Total 48 6-84

Sun-1 Local Batch Create 398 12-84
Total 307 12-84

Local Struct Create 169 12-84
Total 1070 12-84

Local Incre Total 61 12-84

Sun-1 780 4.1 (Navajo) VAX-IKP Batch Create 287 6-84

Total 207 6-84

VAX-IKP Struct Create 23 6-84
Total 403 6-84

Sun-I 780 4.1 (Navajo) IP Batch Create 148 6-84
Total 124 6-84

IP Struct Create 19 6-84
Total 406 6-84

IP Incre Total 4.7 6-84

Sun-i 780 4.1 (Navajo) IP Batch Create 222 12-84
Total 210 12-84

IP Struct Create 22 12-84
Total 744 12-84

A IP Incre Total 71 12-84

Sun-1 780 4.1 (Navajo) PUP Batch Create 156 6-84
% Total 123 6-84

PUP Struct Create 21 6-84
Total 405 6-84

, PUP Incre Total 4.4 6-84

*,p ., Sun-1 780 4.1 (Navajo) PUP Batch Create 171 12-84
Total 164 "t2-84

*.-.- PUP Struct Create 18 12-84
Total 681 12-84

PUP Incre Total 61 12-84

" q
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Sun-i 760 4.2 (Gregorlo) IP Batch Create 128 6-84
Total 103 6-84

IP Struct Create 24 6-84
Total 442 6-84

IP Incre Total 5 .6-84

Sun-I 750 4.2 (Gregorio) IP Batch Create 185 12-84
Total 175 12-84

IP Struct Create 20 12-84
Total 672 12-84

IP Incre Total 66.1 12-84

Sun-i 750 4.2 (Gregorio) PUP Batch Create 139 12-84
Total 133 12-84

PUP Struct Create 17 12-84
Total 574 12-84

PUP Incre Total 36.4 12-84

Sun-i 750 4.2 (Pescadero) VAX-IKP Batch Create 65 6-84
Total 57 6-84

VAX-IKP Struct Create 2 6-84
Total 28 6-84

Sun-i 780 4.1 (ISI-A) A-IP Batch Create 117 6-84
Total 94 6-84

A-IP Struct Create 14 6-84
Total 305 6-84

A-IP Incre Total 3 6-84

Sun-1 750 4.2 (ISI-H) A-IP Batch Create 108 6-84
Total 75 6-84

A-IP Struct Create 12 6-84
Total 257 6-84

A-IP Incre Total 2 6-84

Sun-l 780 4.2 (Camelot) IPGW Batch Create 193 6-84

Total 146 6-84
IPGW Struct Create 20 6-84

.e Total 394 6-84
IPGW Incre Total 3.4 6-84

Sun-I 780 4.2 (Camelot) PUPGW Batch Create 146 6-84
Total 114 6-84

PUPGW Struct Create 20 6-84

Total 405 6-84

Sun-I Another Sun-I Sun-IKP Batch Create 324 6-84
Total 258 6-84

Sun-IKP Struct Create 112 6-84
Total 835 6-84

Sun-IKP Incre Total 14.6 6-84

Sun-2upg Local Batch Create 398 6-84
Total 304 6-84

Local Struct Create 142 6-84
Total 990 6-84

" Local Incre Total 42 6-84

Sun-2upg Local Batch Create 391 12-84

Total 300 12-84
Local Struct Create 133 12-84

Total 975 12-84
Local Incre Total 59 12-84

V . "% - , . , ".-.-.• -. -•-.-% -,-.-%-.-.- , .-. .- ,- . . "". -. • - , • - - -4, _ _ - " , - . '" , '. "". . ' '' , ' '' , ' " " ' . ". " . , " . . . . - . " .
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Sun-Zupg 780 4.1 (Navajo) IPGW Batch Create 140 6-84
Total 118 6-84

IPGW Struct Create 18 6-84
Total 378 6-84

IPGW Incre Total 4.5 6-84

Sun-2upg 780 4.2 (Navajo) IPGW Batch Create 207 12-84
Total 202 12-84

IPGW Struct Create 21 12-84
Total 687 12-84

IPGW Incre Total 61 12-84

Sun-2upq 780 4.1 (Navajo) PUPGW Batch Create 128 6-84
Total 99 6-84

PUPGW Struct Create 6.8 6-84
Total 182 6-84

PUPGW Incre Total 1.5 6-84

Sun-2upU 760 4.2 (Gregorio) VAX-IKP Batch Create 258 6-84
Total 173 6-84

VAX-IKP Struct Create 14 6-84
Total 287 6-84

VAX-IKP Incre Total 4.7 6-84

Sun-2upq 750 4.2 (Gregorlo) VAX-IKP Batch Create 199 12-84
Total 196 12-84

VAX-IKP Struct Create 15 12-84
Total 620 12-84

VAX-IKP Incre Total 72 12-84

Sun-2upg 750 4.2 (Gregorlo) IP Batch Create 176 12-84
Total 171 12-84

IP Struct Create 19 12-84
Total 670 12-84

IP Incre Total 65 12-84

Sun-2upg 750 4.2 (Pescadero) IP Batch Create 120 6-84
Total 98 6-84

IP Struct Create 25 6-84
Total 456 6-84

IP Incre Total 7 6-84

Sun-2upg 780 4.1 (ISI-A) A-IP Batch Create 106 6-84
Total 88 6-84

A-IP Struct Create 13 6-84
Total 278 6-84

A-IP Incre Total 3.4 6-84

Sun-2upg 750 4.2 (IsI-H) A-IP Batch Create 100 6-84
Total 76 6-84

A-IP Struct Create 12 6-84

Total 257 6-84
A-IP Incre Total 2.7 6-84

Sun-2upg 750 4.2 (15I-11) A-IP Batch Create 91 12-84
Total 81 12-84

;-V A-IP Struct Create 11.0 12-84
Total 373 12-84

A-IP Incre Total 35.9 12-84

Sun-2upg 780 4.2 (Camelot) IPGW Batch Create 189 12-84
Total 185 12-84

IPGW Struct Create 14 12-84
Total 473 12-84

IPGW Incre Total 64 12-84

"a
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Sun-2upg 785 4.2 (Parc-C) A-IP Batch Create 163 11-84
Total 116 11-84

A-IP Struct Create 15 11-84
Total 323 11-84

A-IP Incre Total 3.7 11-84

Sun-2upg 785 4.2 (Parc-C) A-IP Batch Create 126 12-84
Total 114 12-84

A-IP Struct Create 14 12-84
Total 464 12-84

A-IP Incre Total 57.9 12-84

Sun-2upg Another Sun-2 Sun-IKP Batch Create 352 6-84
Total 277 6-84

Sun-IKP Struct Create 112 6-84
Total 875 6-84

Sun-IKP Incre Total 28 6-84

Sun-2upg Another Sun-1.5 Sun-IKF' Batch Create 312 6-84
Total 251 6-84

Sun-IKP Struct Create 98 6-84
Total 831 6-84

Sun-IKP Incre Total 25 6-84

Sun-2 Local Batch Create 439 9-84
Total 295 9-84

Local Struct Create 146 9-84
Total 748 9-84

Local Incre Total 44.9 9-84

Sun-2 Local Batch Create 429 12-84
Total 288 12-84

Local Struct Create 160 12-84
Total 741 12-84

Local Incre Total 63 12-84

Sun-2 780 4.2 (Navajo) IPGW Batch Create 193 12-84
Total 190 12-84

IPGW Struct Create 15 12-84
Total 499 12-84

IPGW Incre Total 70 12-84

Sun-2 750 4.2 (Pescadero) IP Batch Create 150 12-84
Total 146 12-84

IP Struct Create 16 12-84
Total 521 12-84

IP Incre Total 66.3 12-84

Sun-2 750 4.2 (Gregorio) VAX-IKP Batch Create 205 12-84
. Total 199 12-84

VAX-IKP Struct Create 13 12-84
Total 452 12-84

VAX-IKP Incre total 68 12-84

Sun-2 750 4.2 (Gregorlo) IP Batch Create 166 9-84
Total 131 9-84

IP Struct Create 22 9-84
Total 383 9-84

. IP Incre Total 6.1 9-84

Sun-2 750 4.2 (Gregorio) 9600 Batch Create 53.5 9-84
Total 45.9 9-84

9600 Struct Create 20.2 9-84
Total 320 9-84

9600 Incre Total 9.8 9-84

., 4. .4-
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480C Batch Create 25.8 9-84

Total 22.5 9-84
480C tru( L Create 10.6 9-84

Total 233 9-84
4800 Incre Total 7.4 9-84

40 Bat.h Create 14.4 9-84

Total 12.2 9-84

2400 truct Create 7.6 9-84

Total 142 9-84
4)C Incre Total 4.2 9-84

,? 0 bat,h Create 7.4 9-84

Total 6 2 9-84
.20t Struct Create 4.3 9-84

Total 84.1 9-84
1200 Incre Total 2.6 9-84

S.n 2 '5 4 1 (ParC LI A-IP Batch Create 146 11-84

Total 133 11-84
A-IP Stfuct Create 14 11-84

Total 462 11-84
A-IP Incre Total 56.9 11-84

Sun-1.5 Local Batch Create 326 6-84
Total 250 6-84

Local Struct Create 119 6-84

Total 832 6-84
Local Incre Total 34 6-84

Sun-1.5 780 4.1 (Navajo) IP Batch Create 106 6-84

Total 86 6-84
IP Struct Create 14 6-84

Total 292 6-84
IP Incre Total 4 6-84

Sun-1.5 750 4.2 (Pescadero) VAX-IKP Batch Create 223 6-84
Total 147 6-84

VAX-IKP Struct Create 17 6-84
Total 395 6-84

VAX-IKP Incre Total 5.0 6-84

Sun-1.5 750 4.2 (Pescadero) IP Batch Create 128 6-84
Total 102 6-84

IP Struct Create 22 6-84
Total 395 6-84

Ip Incre Total 6.5 6-84

Sun-1.5 750 4.2 (Pescadero) PUP Batch Create 68 6-84

Total 58 6-84

PUP Struct Create 18 6-84

Total 341 6-84
PUP Inrre Total 4.5 6-84

Sun-1.5 750 4.2 (Pescadero) 1200 Batch Create 7.4 6-84

Total 6.4 6-84
1200 Struct Create 4.5 6-84

Total 83 6-84
1200 Incre Total 0.5 6-84

Sun-1.5 780 4.1 (ISI-A) A-IP Batch. Create 100 6-84

Total 84 6-84
A-IP Struct Create 13 6-84

Total 275 6-84

- -
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A-IF Incre Total 2 6-84

Sun-l.5 750 4.2 (ISI-H) A-IF Batch Create 113 6-84
Total 82 6-84

A-IF Struct Create 11 6-84
Total 232 6-84

A-IP Incre Total 0.8 6-84

Sun-1.5 Another Sun-2 Sun-IKP Batch Create 306 6-84
Total 238 6-84

Sun-IKP Struct Create 100 6-84
Total 770 6-84

Sun-IKP Incre Total 24.2 6-84

Sun-1.5 Another Sun-1.5 Sun-IKP Batch Create 279 6-84
Total 220 6-84

Sun-IKP Struct Create 85 6-84
Total 690 6-84

Sun-IKP Incre Total 22.1 6-84

Cadlinc 780 4.1 (Navajo) IF Batch Create 138 6-84
Total 111 6-84

IF Struct Create 18 6-84
Total 350 6-84,

IF Incre Total 4.6 6-84

Cadlinc 780 4.1 (Navajo) VAX-IKP Batch Create 272 6-84
Total 187 6-84

VAX-IKP Struct Create 21 6-84
Total 370 6-84

VAX-IKF Incre Total 7.5 6-84

Cadlinc 750 4.2 (Fescadero) IF Batch Create 130 6-84
Total 99 6-84

IF Struct Create 22 6-84
Total 386 6-84

IF Incre Total 4 6-84

Cadlinc 780 4.1 (151-A) A-IP Batch Create 102 6-84
Total 84 6-84

A-IF Struct Create 12 6-84
Total 255 6-84

A-IP Incre Total 2.7 6-84

Cadlinc 750 4.2 (151-H) A-IF Batch Create 115 6-84
Total 75 6-84

A-IF Struct Create 12 6-84
Total 251 6-84

A-IF Incre Total 2 6-84

Cadlinc 780 4.2 (Camelot) IPGW Batch Create 115 6-34
Total 82 6-84

IPGW Struc. Create 12 6-84
lotal 2b9 0-84

IPGW Incre Total 2.7 6-84

Table D-3: Dectailed structured graphics results
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D.4 Illustration Data

These tests were performed on a local l0Mhz workstation with the Sun-1 frame buffer. This table lists the
number of items, time for display in milliseconds, the resulting rate (including both creation and display) in
items per second, the memory that would be needed to store the bitmap (in thousands of bytes), and and the
memory used in the SDF (also in thousands of bytes). These experiments wcre performed in October of
1984.

Figure Obects Time Rate Bitmap SDF
1-1 365 1370 266 34K 7.3K
1-2 105 430 244 21K 2.1K
2-1 71 330 215 17K 1.4K
2-2 80 360 222 19K 1.6K
3-1 125 510 245 17K 2.5K
3-2 137 530 258 19K 2.7K
3-3 115 490 235 19K 2.3K
3-4 73 360 203 13K 1.5K
3-5 88 400 220 20K 1.8K
4-1 132 540 244 27K 3.6K
4-2 - 157 680 231 28K 3.1K
5-2 66 280 236 40K 1.3K
5-3 99 390 254 16K 2.0K
6-1 33 160 206 10K 0.7K
6-2 101 450 224 13K 2.0K

Table D-4: Detailed illustration data
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